
 

 



 

Abstract: 

Graphics Processing Units (GPUs) have the potential to achieve large performance 

improvements over CPUs for certain numerical computing applications.  To write software that 

achieves these large performance improvements on real-world applications the developer must 

have considerable experience programming GPUs.  We have developed a prototype software 

named JavaAutoCuda that enables programmers to write in a serial fashion using Java and 

automatically obtain often quite significant speedups with GPUs for certain numerical 

computing applications.  JavaAutoCuda is unique in that it requires no work to use other than 

writing Java Source Code in a serial manner.  In addition, no other related work translates Java 

Bytecode to use GPUs.  Java Bytecode is a garbage collected intermediate form that over 40 

programming languages use as their compiled form.  Using this intermediate form opens up the 

possibility to support any language that compiles to Java Bytecode.  In a simple test of writing a 

matrix multiplication program using our method the programmer development time was one 

third that of using the native GPU language CUDA C.  The performance of the result using our 

method was up to 29X faster than a serial C version.  However, using CUDA C the GPU 

application obtained a 70X speedup, signifying that eventually more advanced optimizations 

can be fruitfully applied. 
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CHAPTER 1. INTRODUCTION 
 

 

 

 

Researchers in applied sciences now commonly depend on computational analysis to 

obtain their results.  For instance, a computational biologist may create a protein folding 

application to gain insight into the ways different proteins interact with one another.  A 

protein folding application, along with many other applied science applications, takes a 

very long time to compute a result without using parallel processing.  However, a 

researcher's first draft of an application will most likely be written without parallelism.  

This is because it takes additional skill and effort to manually program an application to use 

parallelism.   

 

There are several ways to get parallelism from hardware today.  There are multi-core CPUs, 

multi-core Graphics Processing Units (GPU) and multiple computers containing multi-core 

processors.  The focus of this work is specifically using GPUs for parallelism.  The GPU has a 

specialized architecture that has allowed many researchers to get phenomenal speedups at 

a low hardware cost.  For instance, a radar signal processing application (space time 

adaptive processing) has achieved a 140X speedup over a serial CPU version [14].  This 

speedup is quite extraordinary, but there is a catch to using GPUs: The programmer skill 

and development time required to convert the original serial version of the application to 

use GPUs is typically too prohibitive for an applied scientist to work alone.  Instead, the 
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applied scientist must collaborate with a computer scientist who will manually analyze the 

serial program and convert it a parallel program that uses the GPU. 

 

The author has played the role of the computer scientist collaborating with an applied 

physicist to convert a serial medical imaging application to a parallel version that uses the 

GPU.  The physicists hoped for a 50X speedup.  With a 50X speedup the lab's improved 

medical imaging algorithms would undergo clinical trials.  While the author was a fairly 

experienced programmer, he faced difficulty with this problem.  Beginning the project he 

knew nothing about the use of GPUs and also nothing about the physics behind the medical 

imaging application.  The author worked for five months trying to convert the 9000 lines of 

code into something that would achieve a 50X speedup using a GPU.  The result was a 4.7X 

slowdown of the original serial application.  The author temporarily gave up because he 

didn't have the tools needed to effectively work on this problem.  Massive code 

restructuring was required to get a speedup and maintaining program correctness after the 

restructuring without tools was too complex and time consuming.  Other researchers have 

had this problem as well.  For instance, a computational biology researcher converted a 

serial application to a parallel GPU application and obtained a 60X slowdown [10].  After 

optimizing the parallel application a final result of a 7X slowdown was achieved. 

 

The solution presented in this thesis is to automatically analyze serial code for places that 

would achieve a speedup on a GPU and automatically restructure the code to obtain that 

speedup.  Other work has been done in this area.  The significant difference from the other 

work is that with this work the application developer can program in the high level, Java 
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programming language in a serial fashion and obtain speedups possible with GPUs without 

any additional manual analysis.  Most of the other related projects require the end user to 

program in older languages such as Fortran or C or languages that are not general purpose 

such as MATLAB.  There is one other related project that requires the end user to program 

in Python, a high level general purpose programming language, but annotations of types are 

required to overcome the face that Python is an untyped language.  The solution presented 

in this thesis resulted in a 29X speedup in a matrix multiplication test case.  Future work 

will try to expand the number of user programs that can be parallelized. 

 

 

SECTION 1.1 OVERVIEW OF THIS RESEARCH 
 
To gain insight into automatically transforming a serial Java program into a parallel Java 

program that uses the GPU, prototype software named JavaAutoCuda has been developed.  

Rather than analyzing Java Source Code, the intermediate representation named Java 

Bytecode is analyzed.  This was done in hopes of supporting all of the programming 

languages that compile to Java Bytecode. 

 

From a very high level, JavaAutoCuda does a static analysis to find possible loops that 

would obtain a speedup if they were run on the GPU.  Then the static analyzer manipulates 

the input application so that, if at runtime it is determined there would be a speedup 

running on the GPU, execution is on the GPU.  Otherwise, execution is on the CPU. 
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SECTION 1.2 SUMMARY OF RELATED WORK 
 
There are seven other related systems that try to make it easier to use GPUs.  These are 

Jacket, the PGI Accelerator Compiler, hiCUDA, HMPP, OpenMP to GPGPU, the unnamed 

Python project and CUDA-lite.  What follows is a summary of these related works.  A more 

extended review of the related work is located in Appendix A. 

 

All of these works except CUDA-lite target making GPU programming easier by 

automatically generating the GPU program (called a kernel) from a CPU program and the 

required CPU code to get the data to and from the GPU.  CUDA-lite targets transforming an 

existing GPU kernel into a new GPU kernel with optimized memory access patterns that will 

get performance enhancements with Nvidia brand GPUs.  Below is a table specifying the 

input languages of each related project. 

Related Project Input Language 
Jacket MATLAB with Jacket library 
PGI Accelerator Compiler C or Fortran with custom annotations 
hiCUDA C with custom annotations 
HMPP C with custom annotations 
OpenMP to GPGPU C with OpenMP annotations 
CUDA-lite CUDA C with custom annotations 

Python Project Python with custom annotations and type annotations 

This Research Java 

Table 1 – Input languages of related work and this research 

 

It can be seen from table 1 above that most of the systems do not on a general purpose, 

garbage collected language such as C# or Java.   This thesis describes the effort to support 
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the Java Programming Language in conjunction with GPUs.  Additionally, each of these 

related works requires some sort of manual analysis beyond that of simply writing a serial 

application.  JavaAutoCuda (this work) requires no additional manual analysis.  The closest 

competitor, the Python project does operate on a general purpose language, but the user 

must compensate for the fact that Python is an untyped language by adding annotations.  

The degree of manual analysis that each related project requires is discussed in detail 

Appendix A and a summary table is listed below. 

Related Project Relative Effort Required to Utilize GPU 
Jacket Low 
PGI Accelerator Compiler Low 
hiCUDA High 
HMPP Medium 
OpenMP to GPGPU Medium 
CUDA-lite High 
Python Project Medium 

This research Very Low 

Table 2 – Effort Required to Utilize GPU for each Related Project and this research 

 

Several of the related projects apply optimizations that are more advanced than what the 

author of this work has currently done.  The focus of this work was to support garbage 

collected languages so the largest contributions are in that area and not in optimizations.  

Below is a table that outlines the optimizations in each of the related projects. 

Related Project Optimizations  
Jacket - Proprietary project with unknown optimizations 
PGI Accelerator Compiler - Manual: Sharing data between GPU kernel launches 

- Automatic: Loop nesting level selection 
- Automatic: Array region analysis to reduce memory transfers 
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hiCUDA - Manual: Any manual CUDA optimization can be applied 
- Automatic: Non-perfect distribution of iteration indexes 
supported 

HMPP - Manual: Sharing data between GPU kernel launches 
- Automatic: Compatible with MPI to support multiple 
computers 

OpenMP to GPGPU - Manual: Optimal caching requires manual assistance 
- Automatic: Parallel loop swap 
- Automatic: Loop collapsing 
- Automatic: Memory transfer reduction of results in shared 
memory 

CUDA-lite - Manual: Optimal coalescing requires manual assistance 
currently but may be possible to do automatically 

Python Project - Automatic: Loop unrolling 
- Automatic: Loop fusion (limited) 
- Automatic: Load coalescing (partial) 

This research - Automatic: High performance (de)serialization of Java 
objects to/from GPU memory 
- Automatic: Determination of what loops to run on the GPU 
that incorporates divergent execution 

Table 3 – Optimizations of the Related Projects and this research 

 

This research includes high performance (de)serialization of Java objects to/from GPU 

memory.  It also pays attention to divergent execution (discussed in Section 3.1.2) when 

choosing loops to parallelize. 
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CHAPTER 2. BACKGROUND INFORMATION 
 

 

 
 
 
In this chapter the architecture of the GPU is discussed along with GPU programming 

examples.  Then Java Bytecode is explained and the Soot Java Optimization Framework is 

introduced.  Finally, JCuda, the library used to access the CUDA runtime from Java is 

discussed.   

 

The architecture of the GPU will be discussed specifically in terms of Nvidia brand GPUs.  

The other major vendor of GPUs is AMD.  The Nvidia brand has been selected because they 

were the first to have a C-like programming language to program the GPU and our lab only 

has this brand GPU. 

 

 

SECTION 2.1 ARCHITECTURE OF THE GPU  
 

Nvidia GPUs are organized as sets of SIMD processing elements.  Each processing element 

has 8 ALUs that all share instruction fetch hardware.  Code is executed by grouping 32 

threads together that all share instruction fetch hardware.  This has implications where the 

user code must have groups of 32 threads executing in lock-step otherwise the threads will 

become serialized.  The term for threads not executing in lock-step is divergent execution.  
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Example code with performance measurements demonstrating the penalties associated 

with divergent execution on a GPU are in Section 2.1.2.  Nvidia GPUs also have a large global 

memory that is originally filled by the CPU before beginning the GPU calculation.  The GPU 

global memory fetch is slow, so to achieve enhanced performance over a CPU the GPU must 

run thousands of threads concurrently to hide the latency associated with this global 

memory fetch.  The memory is arranged in banks that favor coalesced memory access 

which is defined and discussed in Section 2.1.3. 

 

The Nvidia GPUs also contain a small, fast 16KB shared memory that can be used to store 

frequently used global memory items.  The memory is called shared memory because it is 

shared among all threads within a thread-block.  An analysis of the performance 

improvement while using shared memory is found in Section 2.1.4.  Along with the shared 

memory there is texture memory that is read-only global memory with a hardware cache. 

 

The programming interface for Nvidia GPUs is named CUDA.  In CUDA functions called 

kernels are written that are the entry point to the GPU calculation.  When writing a kernel, 

and any function a kernel calls, a developer needs to keep in mind that the code will be 

executed many times in parallel.  In the kernel function the user accesses specialized thread 

index registers that identify the current thread.  The kernel function then uses the thread 

index to fetch data from global memory.  This ensures each kernel invocation operates on a 

different input data set. 
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In CUDA there are barrier synchronization primitives that allow every thread on the device 

to become synchronized.  This only works if every thread on the device executes the barrier 

synchronization instruction, otherwise there is a deadlock.  In general, this work tries to 

avoid using barrier synchronization primitives because it requires more analysis to 

determine if deadlocks will occur.  In addition to barriers the newer GPUs contain a set of 

atomic instructions to execute useful operations such as atomic exchange, add, subtract and 

compare and swap.  Also, there is a “thread fence block” primitive that the author does use 

to make sure all threads within a block can see previous writes to shared memory before 

continuing execution. 

 

At runtime the number of data elements to process is chosen by picking launch parameters.  

The launch parameters specify how many blocks and threads to run.  The total number of 

data items is the number of blocks times the number of threads.  Choosing the number of 

blocks and threads is a delicate matter.  To achieve a performance enhancement the kernel 

launch must have thousands of iterations while at the same time not so many iterations that 

the GPU runs out of resources. 

 

 

SECTION 2.1.1 GPU COMPUTATIONAL CAPABILITIES 
 

The Nvidia Tesla C1060 GPU can reach 933 GFLOPS peak performance in single-precision 

floating point calculations.  Comparatively, the fastest six-core CPU (Intel Core i7 980 X3) 

can reach 108 GFLOPS (single-precision) [17].  The C1060 is arranged as 240 cores with 
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groups of 8 sharing instruction fetch hardware.  The actual performance is limited by 

divergent execution and memory bandwidth.  The optimal actual memory bandwidth of 

102GB/sec [12] is achieved when memory accesses are coalesced.  If shared memory is 

used the GPU can perform at speeds beyond those restricted by memory bandwidth.  These 

issues are discussed in detail in Sections 2.1.2 through 2.1.4. 

 

 

SECTION 2.1.2 DIVERGENT EXECUTION 
 

Divergent execution is when two GPU threads within the same thread-block need to fetch 

different instructions at a particular time.  For instance, if there is an if statement whose 

condition is dependent on the thread id, one thread will execute the body of the if and 

another will not.  If this happens execution has diverged.  The related works in Appendix A 

do not focus on methods that specifically work to reduce the amount of divergent execution 

occurring on the GPU, but in the author’s experience he has found it is a problem that needs 

to be addressed.  To demonstrate the problems, two programs that have the same behavior 

are listed in figures 1 and 2.  The program in figure 1 has more divergent execution than the 

program in figure 2 and runs at half the speed.  The speed is cut in half because the program 

diverges into two execution paths.  In a complex program there is the possibility for more 

divergent paths and a larger performance hit. 

1 
2 
3 
4 
5 
6 

__global__ void large_diverge(int * x, int * y, int * z, int iters) { 
  int tid = threadIdx.x; //the thread identifier 
  if(tid % 2 == 0){ 
    z[tid] += 1; 
    for(int i = 0; i < num_iterations; i++){ 
       z[tid] += x[i] + y[i]; 
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7 
8 
9 
10 
11 
12 
13 
14 
15 

    } 
  } else if(tid % 2 == 1){ 
    z[tid] += 2; 
    for(int i = 0; i < num_iterations; i++){ 
      z[tid] += x[i] + y[i]; 
    } 
  } 
  __syncthreads(); 
} 

Figure 1 - Kernel With Lots of Divergent Execution 

 

Figure 1 above contains two for loops where each is inside an if statement whose condition 

is dependent on the thread identifier.  The only thing different between the two bodies of 

the “if” and “else if” is that a global variable is incremented by a different value.  Since the 

for loops are the same, they can be pulled outside of the “if” and “else if” and divergent 

execution will be reduced.  This modified program is shown in figure 2 below. 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

__global__ void small_diverge(int * x, int * y, int * z, int iters) { 
  int tid = threadIdx.x;  //the thread identifier 
  if(tid % 2 == 0){ 
    z[tid] += 1; 
  } else if(tid % 2 == 1){ 
    z[tid] += 2; 
  } 
  for(int i = 0; i < num_iterations; i++){ 
    z[tid] += x[i] + y[i]; 
  } 
  __syncthreads(); 
} 

Figure 2 - Kernel With Less Divergent Execution 

 

As shown below in table 4 the execution time of the kernel with large divergence is 2X that 

of the kernel with small divergence.  The performance measurements were executed on a 

computer with a Tesla C1060 GPU.  The number of iterations used when collecting the 

measurements was 4096. 
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Kernel Execution Time 
large_diverge 78 seconds 
small_diverge 39 seconds 

Table 4 - Execution Time Of Kernels With Different Divergent Execution 

 

 

SECTION 2.1.3 MEMORY ACCESS COALESCING 
 

Memory access coalescing occurs when the GPU can make one request to the global 

memory to fetch or set a number of memory locations.  This occurs on the Nvidia GPUs 

when each thread accesses a memory location that is exactly n larger than the thread 

memory location access before it, where n is the size of the data value and limited to sizes of 

4 and 8.  An example of a kernel without coalesced reads and writes is in figure 4 and a 

coalesced version is found in figure 3.  The kernels do not have the same exact behavior but 

they do have the same exact number of operations and memory accesses.  Non-coalescing 

behavior for figure 4 was ensured by placing random numbers in the variable y. 

1 
2 
3 
4 
5 
6 
7 
8 

__global__ void coalesced(int * x, int * y, int * z, int iters) { 
  int tid = threadIdx.x; //the thread identifier 
  for(int i = 0; i < iters; ++i){ 
    int y_tid = y[tid]; 
    z[tid] += x[tid % blockDim.x] * y_tid + i; 
  } 
  __syncthreads(); 
} 

Figure 3 – Kernel with Coalesced Reads and Writes 

 

1 
2 
3 
4 
5 

__global__ void not_coalesced(int * x, int * y, int * z, int iters) { 
  int tid = threadIdx.x;  //the thread identifier 
  for(int i = 0; i < iters; ++i){ 
    int y_tid = y[tid]; 
    z[tid] += x[y_tid % blockDim.x] * y_tid + i; 
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6 
7 
8 

  } 
  __syncthreads(); 
} 

Figure 4 – Kernel without Coalesced Reads and Writes 

 

The performance comparison of the two kernels is listed in table 5 below.  With coalescing 

the kernel is 6X faster.  The performance measurements where run on a computer with a 

Tesla C870 running 4096 iterations. 

Kernel Execution Time 
coalesced 30 seconds 
not_coalesced 194 seconds 

Table 5 – Performance of Coalesced and Not Coalesced Kernels 

 

 

SECTION 2.1.4 SHARED MEMORY PERFORMANCE 
 

Storing commonly used data in the fast shared memory can boost performance of a GPU 

kernel past the global memory bandwidth barrier.  Two versions of a matrix multiplication 

application are listed in Section 2.1.5.  Figure 6 is a kernel without using shared memory 

and figure 7 is a kernel using shared memory.  The use of shared memory dramatically 

increases performance in this case, as shown in table 6 below.  Performance measurements 

were taken on a computer with a Tesla C870 GPU.  The size variable was set to 4096. 

Kernel Execution Time 
gpu_mult 189 seconds 
gpu_mult2 (shared memory version) 1 second 

Table 6 – Performance of Global Memory Only and Shared Memory Kernels 
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SECTION 2.1.5 PROGRAMMING GPUS WITH CUDA 
 

A simple CUDA Matrix Multiplication example is shown below.  The host code that runs on 

the CPU is shown in figure 5 and the device code that runs on the GPU is shown in figure 6.   

 

In the host code from lines 3 though 5 memory is allocated on the GPU that will be used to 

store the CPU input data matrices x and y and the result z from the device.  On lines 7 

through 8 the CPU x and y are copied to the device d_x and d_y.  On line 9 the gpu_mult 

kernel is called with 64 blocks and 64 threads and passing the device memory and size as 

arguments.  On line 10 the result from the device is copied to the GPU and at line 11 the 

GPU memory is freed.  

 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

void mult(int * x, int * y, int * z, int size){ 
  int * d_x; int * d_y; int * d_z; 
  cudaMalloc((void**)&d_x, sizeof(int)*size*size); 
  cudaMalloc((void**)&d_y, sizeof(int)*size*size); 
  cudaMalloc((void**)&d_z, sizeof(int)*size*size); 
 
  cudaMemcpy(d_x, x, sizeof(int)*size*size,cudaMemcpyHostToDevice); 
  cudaMemcpy(d_y, y, sizeof(int)*size*size,cudaMemcpyHostToDevice); 
  gpu_mult<<<64, 64>>>(d_x, d_y, d_z, size); 
  cudaMemcpy(z, d_z, sizeof(int)*size*size,cudaMemcpyDeviceToHost); 
  cudaFree(d_x); cudaFree(d_y);  cudaFree(d_z); 
} 

Figure 5 – Matrix Multiplication Host Code 

 

In the gpu_mult kernel, below, the inner two loops of matrix multiplication can be clearly 

seen starting at lines 3 and 5.  The outer loop is implicitly executed because there are 64 

blocks and 64 threads running.  At line 2 the index for the outer loop is obtained by 
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multiplying the block index (blockIdx.x) by the number of threads (blockDim.x) and adding 

the thread index (threadIdx.x). 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

__global__ void gpu_mult(int * x, int * y, int * z, int size){ 
  int i = blockIdx.x * blockDim.x + threadIdx.x; 
  for(int j = 0; j < size; ++j){ 
    int total = 0; 
    for(int k = 0; k < size; ++k){ 
      total += x[k*size+j] * y[i*size+k]; 
    } 
    z[i*size+j] = total; 
  }   
} 

Figure 6 – Matrix Multiplication Device Code 

 

An optimization for the gpu_mult kernel is to use shared memory as a cache of array 

elements that will be shared between threads.  This is shown in Figure 7 below. 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

__global__ void gpu_mult2(int * x, int * y, int * z, int size){ 
  int i = blockIdx.x * blockDim.x + threadIdx.x; 
  for(int j = 0; j < size / BLOCK_SIZE; ++j){ 
    __shared__ int Xs[BLOCK_SIZE*BLOCK_SIZE]; 
    __shared__ int Ys[BLOCK_SIZE*BLOCK_SIZE]; 
 
    Xs[i*size+j] = x[i*size+j]; 
    Ys[i*size+j] = y[i*size+j]; 
 
    __syncthreads(); 
 
    int total = 0; 
    for(int k = 0; k < BLOCK_SIZE; ++k){ 
      total += Xs[k*size+j] * Ys[i*size+k]; 
    } 
 
    __syncthreads(); 
    z[i*size+j] += total;  //assumes z has been initialized to zeros 
  }   
} 

Figure 7 – Matrix Multiplication Device Code Using Shared Memory 
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SECTION 2.1.6 OTHER EXISTING WAYS TO PROGRAM GPUS 
 

There exists ways to program GPUs other than this work and the related work.  There are 

low level methods that require the programmer to know at least two programming 

languages: one for the CPU and one for the GPU.  These low level methods include OpenGL, 

ATI Stream and OpenCL.  Then there are methods to access GPU programming languages 

and runtimes from high-level languages.  These methods are JCuda, CUDA.NET, PyCuda, 

JavaCL and ScalaCL.  JCuda is used from the JavaAutoCuda runtime to interact with the 

CUDA runtime. 

 

Higher level numerical computing support includes the following optimized libraries for 

CUDA: CUBLAS, CUFFT and CUDPP.  CUBLAS is an implementation of BLAS (Basic Linear 

Algebra Subprograms) that is GPU accelerated.  CUFFT supports FFT (Fast Fourier 

Transform) and CUDPP is the CUDA Data Parallel Primitives Library.  CUDPP supports 

parallel radix sorting, parallel compacting of arrays (removing zeros), parallel scan and 

parallel sparse matrix-vector multiply. 

 

Lastly, there is Mars, a MapReduce framework for graphics processors [11].  MapReduce is 

a parallel programming methodology that requires the programmer to determine parallel 

tasks and phrase them as a map function and phrase the merging of parallel tasks at their 

completion with a reduce function. 
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SECTION 2.2 JAVA BYTECODE 
 

Java Bytecode is a stack based intermediate code that gets interpreted or compiled down to 

assembly by the Java Virtual Machine.  The three places data can exist are in the stack, in 

method locals and in object fields.  There is a garbage collected memory model where all 

objects are accessed through references.   

 

When choosing the language to analyze and manipulate the author wanted a general 

purpose, statically typed, garbage collected language.  Also, platform independence is 

important so C# was eliminated from the list primarily because of the problems with 

Mono1

 

, notably the debugger.  Java was chosen then and the choice was between analyzing 

Java Source Code and Java Bytecode.  Java Bytecode was chosen because many languages 

compile to Bytecode and someone may not have access to the original source code for their 

application.  From Wikipedia the most well-known languages that compile to Java Bytecode 

are: ColdFusion, Clojure, Groovy, JavaFX script, Jruby, Jython, Rhino, Scala and Java [19].  

There are a total of 47 lesser known languages listed on that same page that compile to Java 

Bytecode.  There is also a large number of Java Virtual Machines, 50 are listed on [18].  Note 

that a large number of languages also compile to CLI (C#'s intermediate form) but an open 

source, freely available, framework for manipulating CLI in Single Static Assignment form 

was not found when researching possible libraries to depend on.  Therefore manipulation 

of Java Bytecode was chosen. 

                                                             
1 Mono is an open source implementation of the C# runtime and compiler for Linux 
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SECTION 2.3 SOOT 
 

Soot is a framework written in Java by the Sable research group from McGill University 

[16].  Soot allows a developer to analyze, generate and manipulate Java Bytecode.  Soot 

provides four intermediate representations: Baf, Jimple, Shimple and Grimp.  JavaAutoCuda 

takes as input Shimple code.  Shimple is a typed 3-address intermediate representation 

with the SSA property.  SSA stands for Single Static Assignment and makes some 

transformations easier.  After JavaAutoCuda transforms the Shimple code, the code no 

longer has the SSA property so it is more like Jimple than Shimple.  Jimple is a typed 3-

address intermediate representation without the SSA property.  Soot uses the algorithms 

from Ron Cytron's paper “Efficiently Computing Static Single Assignment Form and the 

Control Dependence Graph” [6]. 

 

To give the reader a feel for Soot, some common operations with Soot are listed along with 

sample Java code.  There are two categories of example operations: transformations outside 

of methods and transformations inside of methods. 

 

 

SECTION 2.3.1 SOOT TRANSFORMATIONS OUTSIDE OF METHODS 
 

 
The Soot transformations outside of methods that will be discussed are: 1) Creating a new 

class, 2) Creating a new method and 3) Making a private field public. 
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To create a new class that will be accessible to subsequent transformations the Java Source 

code in figure 8 could be used.  Note that the version of Soot publicly available online will 

not allow you to do this while inside a Soot transformation pack due to the use of iterators 

in Soot.  I desired this feature for my transformation so the feature was added to Soot.  The 

new version of Soot can be downloaded from a location listed in Appendix B. 

1 
2 
3 
4 
5 

SootClass new_class = new SootClass(“className”, Modifier.PUBLIC); 
SootClass parent = Scene.v().getSootClass(“java.lang.Object”); 
new_class.setSuperClass(parent); 
new_class.setApplicationClass(); 
Scene.v().addClass(new_class); 

Figure 8 – Java Source Code to Create a Class 

 

To create a new method that accepts an integer and returns an integer the Java Source Code 

in figure 9 could be used. 

1 
2 
3 
 
4 
5 
6 
7 
8 
9 

List<Type> input_types = new ArrayList<Type>(); 
input_types.add(IntType.v()); 
SootMethod method = new SootMethod(“methodName”, input_types,  
  IntType.v(), Modifier.PUBLIC); 
SootClass enclosingClass = Scene.v().getSootClass(“className”); 
method.setDeclaringClass(enclosingClass); 
Body body = Jimple.v().newBody(method); 
method.setActiveBody(body); 
enclosingClass.addMethod(method); 
//now add code to body 

Figure 9 – Java Source Code to Create a Method 

 

Finally, it is useful have code that makes a private field public using Soot.  My 

transformations destroy encapsulation that developers have created by making needed 

fields public.  Java Source Code to make a field public is listed in figure 10 below. 
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2 
3 
4 
5 
6 
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void makePublic(SootField field){ 
  int modifiers = field.getModifiers(); 
  modifiers &= ~Modifier.PRIVATE; 
  modifiers &= ~Modifier.PROTECTED; 
  modifiers |= Modifier.PUBLIC; 
  field.setModifiers(modifiers);   
} 

Figure 10 – Java Source Code to Make a Field Public 

 

 

SECTION 2.3.2 SOOT TRANSFORMATIONS INSIDE OF METHODS 
 

The example Soot transformations occurring inside of methods are 1) calling another 

method, 2) changing the target of an If Statement, 3) getting a reference to this, 4) creating 

a new object and 5) reading a field.  All of these transformations involve adding Units to a 

Jimple or Shimple Body. 

 
The example Java Source Code found in figure 11 below can be used to call a method that 

expects a java.lang.Object as a parameter and returns an integer.  The example works 

regardless if the method is a constructor, a virtual function or an interface function.  

Invoking static functions is slightly different because an instance is not required therefore 

static functions are not covered with invokeMethod.  Currently the prototype translator 

JavaAutoCuda does not allow static method invocations to occur on the GPU because time 

did not permit the supporting CUDA C code to be written. 

 

1 
2 
3 
4 
5 

Local invokeMethod(Local instance, List<Value> args){ 
  SootClass soot_class = Scene.v().getSootClass(“className”); 
  List<Type> input_types = new ArrayList<Type>(); 
  input_types.add(RefType.v(“java.lang.Object”)); 
  Type ret_type = IntType.v();  
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7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

  SootMethod method = soot_class.getMethod(“methodName”,  
    input_types, ret_type); 
  Value invoke_expr; 
  if(method.getName().equals(“<init>”)){ 
    invoke_expr = Jimple.v().newSpecialInvokeExpr(instance, 
      method.makeRef(), args); 
  } else if(method.isConcrete()) { 
    invoke_expr = Jimple.v().newVirtualInvokeExpr(instance, 
      method.makeRef(), args); 
  } else { 
    invoke_expr = Jimple.v(). newInterfaceInvokeExpr(instance, 
      method.makeRef(), args); 
  } 
  Local ret = Jimple.v().newLocal(“unique name”, 
    method.getReturnType()); 
  Unit u = Jimple.newAssignStmt(ret, invoke_expr); 
  //add unit to Body 
  return ret; 

Figure 11 – Java Source Code to Call Another Method 

 

Getting a reference to this is a simple operation.  The new Soot interface introduced in this 

example is the Value interface.  Values and Units are the basic types that most Units contain.  

Important examples of where Values are used are Locals, the arguments to a binary 

expression, the condition of an If Statement and the left hand side of an assignment. 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

public Local refThis(){ 
  String name = "this0"; 
  SootClass curr_class = getCurrentSootClassOfTransformation(); 
  RefType type = curr_class.getType(); 
  Local thislocal = Jimple.v().newLocal(name, type); 
  Value thisref = Jimple.v().newThisRef(type); 
  Unit u = Jimple.v().newIdentityStmt(thislocal, thisref); 
  //add u to Body 
  return thislocal; 
} 

Figure 12 – Java Source Code to Reference This 

 

Creating a new object involves creating a New Expression and calling the constructor of the 

class.  This is shown in figure 13 below. 
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public Local newInstance(String className, List<Value> params) { 
  SootClass soot_class = Scene.v().getSootClass(className); 
  Local u1_lhs = Jimple.v().newLocal(“localName”, 
    soot_class.getType()); 
  Value u1_rhs = Jimple.v().newNewExpr(soot_class.getType()); 
  Unit u1 = Jimple.v().newAssignStmt(u1_lhs, u1_rhs); 
  //add unit to body 
  List<Type> arg_types = new ArrayList<Type>(); 
  for(int i = 0; i < params.size(); ++i){ 
    arg_types.add(params.get(i).getType()); 
  } 
 
  //invoke ctor with arg_types and params 
  return u1_lhs; 
} 

Figure 13 – Java Source Code to Create a New Instance 

 

Lastly, reading a field is shown in figure 14 below.  Note that getFieldByName at line 4 has 

to search the class hierarchy to find the SootField in the declaring SootClass. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

public Local refInstanceField(Local base, String field_name){ 
  Type base_type = base.getType(); 
  SootClass base_class= Scene.v().getSootClass(base_type.toString()); 
  SootField field = getFieldByName(base_class, field_name); 
  Local ret = Jimple.v().newLocal(getLocalName(), field.getType()); 
 
  Value rhs = Jimple.v().newInstanceFieldRef(base, field.makeRef()); 
  Unit u = Jimple.v().newAssignStmt(ret, rhs); 
  //add unit to body 
  return ret; 
} 

Figure 14 – Java Source Code to Read a Field 

 

 

SECTION 2.4 JCUDA 
 

JCuda provides bindings to the CUDA runtime from within Java.  The bindings are used in 

the JavaAutoCuda runtime to copy memory to/from the GPU and to launch GPU kernels.  A 
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graphical representation of how the JavaAutoCuda runtime is built on top of JCuda is 

displayed below. 

 

Figure 15 - JCuda's Relation to JavaAutoCuda 

 

Originally, OpenCL C was the target language for GPU code generation.  OpenCL provides 

functions in the runtime to compile OpenCL C code.  CUDA and JCuda do not provide such 

functions so a process that executes Nvidia’s compiler, nvcc, is created when JavaAutoCuda 

needs to compile CUDA code.  An example of using the runtime is shown in figure 16 below. 
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CUcontext context = new CUcontext(); 
CUdevice device = new CUdevice(); 
JCudaDriver.cuDeviceGet(device, DEVICE_INDEX); 
JCudaDriver.cuCtxCreate(context, 0, device); 
CUmodule module = new CUmodule; 
JCudaDriver.cuModuleLoad(module, "filename of compiled module"); 
CUfunction function = new CUfunction(); 
JCudaDriver.cuModuleGetFunction(function, module, 
"_Z5entryPcS_S_S_S_PiS0_iii")); 
 
int size = 1024; 
CUdeviceptr gpu_mem = new CUdeviceptr(); 
JCudaDriver.cuMemAlloc(gpu_mem, size); 
 
byte[] host_mem = new byte[size]; 
//set values in host_mem 
 
JCudaDriver.cuMemcpyHtoD(gpu_mem, Pointer.to(host_mem), Sizeof.INT); 
     
JCudaDriver.cuParamSetv(kernel, 0, Pointer.to(gpu_mem), 
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Sizeof.POINTER); 
JCudaDriver.cuParamSetSize(kernel, Sizeof.POINTER); 
 
JCudaDriver.cuFuncSetBlockShape(function, num_threads, 1, 1)); 
JCudaDriver.cuLaunchGrid(function, num_blocks, 1)); 
JCudaDriver.cuCtxSynchronize(); 
 
JCudaDriver.cuMemcpyDtoH(Pointer.to(host_mem), gpu_mem, Sizeof.INT); 
    
//free gpu resources 

Figure 16 - Java Source Code to Run a GPU Job 

 

JavaAutoCuda caches the CUmodules and CUfunctions in a Map where the key is the 

Concrete LoopBody Java class.  This caching saves time when running the same loop twice 

in a program.  Note that when running line 24 (executing the GPU job), one core of the CPU 

has 100% processor usage.  This is detrimental when trying to combine multi-core CPU 

execution with the GPU execution.  Future work will aim to fix this.   
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CHAPTER 3.  ARCHITECTURE OF THE SOLUTION 
 

 

 

 
JavaAutoCuda is implemented as a Java application that analyzes Java Bytecode.  It depends 

on the Soot Java Optimization Framework to convert the stack based Java Bytecode 

representation of the end user program into a Single Static Assignment representation 

named Shimple.  Then the contributed transformations are applied to Shimple code in 

memory.  Soot then converts the transformed Shimple back into Java Bytecode.  This is 

shown in Figure 17 below. 

 

 
Figure 17 – High Level Transformation Flow of JavaAutoCuda 
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SECTION 3.1 DETAILED TRANSFORMATION FLOW 
 
 

In the next figure our contributed transformations are shown.  The diagram shows that first 

loops are detected, then the loops are analyzed to see if they are suitable for running on the 

GPU.  For each loop that is suitable for the GPU CUDA C code is generated and a concrete 

GcObjectVisitor class is created to (de)serialize Java objects to/from the GPU.  These are 

tied together with a Concrete LoopBody that can be enqueued to the JavaAutoCuda runtime 

for processing.  After all of this is done the original loop is modified to use the Concrete 

LoopBody.   
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Figure 18 – Contributed Transformations 

 
 

In figure 19 below the UML class diagram of the transformed class is displayed.    This will 

help the reader in understanding the structure of the resulting code after the 

transformations in sections 3.1.1 through 3.1.6 are applied.  The Concrete LoopBody and 
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Concrete GcObjectVisitor classes are generated entirely from scratch while the 

transformed_method is modified, possibly multiple times if multiple loops exist in series 

and match the policy.  Everything else was developed ahead of time in Java and then 

combined with the results of the transformation. 

 

 
Figure 19 – UML Class Diagram of Transformed Class 

 
 

The remainder of this chapter discusses each processing step from figure 18 in detail. 
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SECTION 3.1.1 LOOP DETECTION 
 

The loop detection algorithm is in figure 20 below.  This first step is very simple: if there is 

a statement in a method that points to a statement whose line number is above the original 

statement, a loop has been detected. 

1 
2 
3 
4 
5 
6 
7 

for each (Shimple Unit) { 
  if (the unit is a goto or an if) { 
    if(the pointed to unit has a line number above the goto) { 
      a loop is located between the two units 
    } 
  } 
} 

Figure 20 - Loop Detection Algorithm 

 

To exemplify the steps to parallelize a Java program to use the GPU, a vector addition 

program will be used as input.  This program is written in Java Source in figure 21 below.  

For simplicity it has been assumed that the lengths of the input arrays are the same.  The 

end result of the translation is that when the translated program runs, the body of the loop 

(line 4) will be automatically executed on the GPU.  Only the data needed to sustain that 

computation will be automatically copied to the GPU memory and only the data that has 

changed (the result ret) will be automatically copied from the GPU memory back to the CPU 

memory. 

1 
2 
3 
4 
5 
6 
7 

public int[] add(int[] x, int[] y){ 
  int[] ret = new int[x.length]; 
  for(int i = 0; i < x.length; ++i) { 
    ret[i] = x[i]+y[i]; 
  } 
  return ret; 
} 

Figure 21 - Java Source Input 
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In figure 22 below the Shimple representation provided by Soot is displayed that 

corresponds to the Java Source code of figure 21  There are no fors or whiles to represent 

loops in Shimple, only ifs and gotos as is common in assembly like languages.  Shimple is 

easier to analyze than assembly like programs because it contains the names of the types 

and methods involved in the computation.  For instance, at line 5, a reference to this is 

made and stored in the local named r0.  You can tell that r0 is of type VectorAddExample 

because at line 2 the local is declared as such and at line 5 the @this contains the type.  Also 

note the Phi expression at line 12, this is used to specify that the local variable i0_1 gets its 

value from two different control paths (#0 (line 10) and #1 (line 20)). 
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21 
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public int[] add(int[], int[]) { 
  VectorAddExample r0; 
  int[] r1, r2, r3; 
  int i0, $i1, $i2, $i3, $i4, $i5, i0_1, i0_2; 
  r0 := @this: VectorAddExample; 
  r1 := @parameter0: int[]; 
  r2 := @parameter1: int[]; 
  $i1 = lengthof r1; 
  r3 = newarray (int)[$i1]; 
  i0 = 0; (0) 
label0: 
  i0_1 = Phi(i0 #0, i0_2 #1); 
  $i2 = lengthof r1; 
  if i0_1 >= $i2 goto label1; 
  $i3 = r1[i0_1]; 
  $i4 = r2[i0_1]; 
  $i5 = $i3 + $i4; 
  r3[i0_1] = $i5; 
  i0_2 = i0_1 + 1; 
  goto label0; (1) 
label1: 
  return r3; 
} 

Figure 22 - Shimple Code Input 
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In the Shimple Code in figure 22 there is a loop from lines 12 to 20 that corresponds 

roughly to lines 3 to 5 of the Java Source Input.  The next algorithm is Loop Analysis that 

will categorize that loop. 

 

 

SECTION 3.1.2 LOOP ANALYSIS 
 

The loop analysis algorithm takes every loop and determines if it is suitable for the GPU.  

The algorithm is shown in figure 23 below.  A Unit is a Soot interface that represents a line 

of Shimple code. 
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for every Shimple Unit in each loop { 
  if the unit is an if or goto that points outside of the Loop { 
    the loop is not suitable for the GPU 
  } 
  if the unit is an assignment and depends on a unit below it { 
    if the value is not a loop control line { 
      the loop is not suitable for the GPU 
    } 
  } 
  if the unit calls a method in the Java class libraries { 
    the loop is not suitable for the GPU 
  } 
  if the unit uses an unsupported Java feature { 
    the loop is not suitable for the GPU  
  } 
  if the unit can possibly be called recursively { 
    the loop is not suitable for the GPU 
  } 
} 

Figure 23 – Loop Analysis Algorithm 

 
The Shimple Code Input in figure 22 passes all of the requirements of being suitable for the 

GPU so the loop will be passed further along the processing chain.  After loop analysis the 

next step is Concrete GcObjectVisitor Generation. 
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SECTION 3.1.3 CONCRETE GCOBJECTVISITOR GENERATION 
 

Concrete GcObjectVisitor Generation enables high performance conversion of Java objects 

into GPU memory and back.  The Gc in the name stands for Garbage Collected and the 

Visitor corresponds to the Visitor design pattern.  The algorithm below is run separately on 

each loop.  An example output of the GcObjectVisitor generation algorithm is located in 

Appendix D, figure 49. 
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create a ConcreteGcObjectVisitor class that is uniquely named 
find every class involved with the loop 
generate the start of a writeToHeap and a readFromHeap method 
for every class involved with the loop 
  find the fields that are possibly used in the loop  
  determine the read/write properties of the field on the GPU 
  add the following code to the writeToHeap method: 
    "if the input object is not an instance of the current class  
    goto label:next" 
       "cast the input object to the current class"        
       "write the object header" 
       "write all fields read on the GPU to the GPU memory" 
    "label:next" 
  add the following code to the readFromHeap method: 
    "if the input object is not an instance of the current class  
    goto label:next" 
       "cast the input object to the current class"  
       "read all fields written on the GPU from the GPU memory" 
    "label:next" 

Figure 24 – Concrete GcObjectVisitor Generation 

 

For simplicity the code that ensures that data is aligned on proper byte boundaries has 

been omitted above.  (On Nvidia GPUs integers have to be aligned on 4 byte boundaries, 

shorts on 2 byte boundaries and so on.).  Also note that the AbstractGcObjectVisitor 

provides caching of previously visited objects so graphs of Java objects are supported.  

Lastly, to support the GcObjectVisitor a Memory interface was created that has two derived 

classes.  One class has methods to write basic types to the GPU memory that does an endian 
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swap and the other does not do a swap.  The correct class is chosen at runtime by the 

GpuRuntime depending on whether the GPU is big endian or little (Java is always big).  This 

method optimizes out the if statements required to determine whether to swap or not that 

would have been needed otherwise. 

 

 

SECTION 3.1.4 CUDA C CODE GENERATION 
 
Cuda C code is generated by implementing a concrete Visitor2

 

 that can operate on each 

element of Shimple code.  There are no fors and whiles in Shimple code but there are ifs and 

gotos.  There are also ifs and gotos in CUDA C so loops that need to be represented on the 

GPU are written as ifs and gotos for simplicity.  Field accesses are translated into getter and 

setter functions where the field address is computed from an object reference.  Java 

references are kept as references in the GPU memory.  An example of generated CUDA C 

code is located in Appendix D, figure 50. 

 

SECTION 3.1.5 CONCRETE LOOPBODY GENERATION 
 

A concrete LoopBody is generated for each loop that is suitable for the GPU.  The three 

interface functions that are implemented through code generation are: run, 

getGcObjectVisitor and getCudaC.  The runtime uses these functions to run jobs.  A 

                                                             
2 The Visitor Design Pattern is a design pattern that can ensure that every type of element in a tree is 
processed  
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constructor is also added that inputs the values of all data needed to sustain the loop body 

and saves them to fields that were also generated. 

 

The run function is implemented by copying the body of the loop and setting up the inputs 

and outputs of the loop to correspond to generated concrete LoopBody fields.  The 

getGcObjectVisitor function is implemented by returning an instance of the 

ConcreteGcObjectVisitor.  The getCudaC function is implemented by returning a string that 

represents the compiled generated CUDA C code.  An example of a generated Concrete 

LoopBody is found in Appendix D, figure 48. 

 

 

SECTION 3.1.6 MODIFICATION OF ORIGINAL LOOP 
 

Currently two forms of modification of the original loop have been implemented.  The first 

method is the simplest method and just picks the outer-most for loop of series of nested 

loops and transforms that.  The second method can use multiple nested loop levels to 

extract out more parallelism for the GPU than the simplest method.  The third method, 

which has not been implemented yet, is to extend the second method to operate on loops 

that call methods that have loops inside.  The result of transforming the input Java source in 

figure 25 is shown below in Java source.  Note that it is shown in Java source to benefit the 

reader, the transformation result is actually Shimple code. 

 
1 
2 
3 
4 

public int[] add(int[] x, int[] y){ 
  int[] ret = new int[x.length]; 
  QueueManager manager = QueueManager.instance(); 
  for(int i = 0; i < x.length; ++i) { 
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    LoopBody1 block = new LoopBody1(i, ret); 
    manager.enqueue(block); 
  } 
  manager.run(); 
  Iterator<LoopBody> iter = manager.iterator(); 
  while(iter.hasNext()){ 
    LoopBody1 curr = (LoopBody1) iter.next(); 
    ret = curr.ret; 
    //run loop body that is iter-loop dependent.Here there is no  
    //code 
  } 
  return ret; 
} 

Figure 25 – Simple Original Loop Transformation 

 

The nice aspect of enqueueing blocks in this manner is that the number of iterations is 

determined when manager.run is called so Java iterators that may have side-effects are 

supported.  When manager.run is called the runtime chooses to either run the LoopBody1 

run function that was populated with the body of the loop or use the LoopBody1 getCudaC 

and getGcObjectVisitor functions to run the body of the loop on the GPU.  Then, from lines 

10 to 14, the results are iterated to support loops that have inter-loop dependencies at the 

bottom of the loop.  Note that the original loop index is saved because if this were an 

iterator, it would have to be only been evaluated once so the application of side-effects 

would be correct. 
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CHAPTER 4. CONTRIBUTIONS 
 

 

 

JavaAutoCuda is the first translator that the author is aware of that automatically enables 

GPU usage within Java programs.  No additional manual analysis is required with 

JavaAutoCuda, unlike the related translators and compilers.  The translator is also unique in 

that it operates on Java Bytecode, opening up the possibility to transform any programming 

language that compiles to Java Bytecode.  High performance (de)serialization of Java objects 

to/from GPU memory is accomplished through the use of Java Bytecode code generation.  

To support the iterator design pattern commonly found in Java Bytecode loops, special 

attention was paid to the method used to detect the number of iterations a loop has.  This 

method properly handles the cases where the iterator has side-effects by ensuring that the 

“hasNext” and “next” functions of the iterator interface are executed exactly the same 

number of times as in the original program.  Since the number of iterations a loop has 

cannot always be determined during static analysis, a run time determination of the 

number has been outlined and tested.  According to a policy variable, if the number of 

iterations is too low to obtain a speedup while using the GPU, the CPU is instead used.  The 

remainder of this chapter explains each contribution discussed above in detail as well as 

supporting contributions that enable the ones listed above. 
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SECTION 4.1 LOOP DETECTION AND LOOP CATEGORIZATION OF JAVA BYTECODE 
 

As discussed in Section 3.1.1, loops are detected in Java Bytecode.  Once loops are detected 

they are categorized according to two aspects.  These aspects are: 1) inter-loop data 

dependency and 2) divergent execution amount. 

 

Inter-loop data dependency is detected by simply checking if an assigned value in the body 

of the loop depends on an assigned value from a unit later on in the loop.  The data flow 

analysis required to implement this algorithm is very simple when operating on Single 

Static Assignment.  Currently, the translations work on loops that have zero inter-loop 

dependent units.  We are working to eliminate that constraint by splitting loops into a top 

and bottom body if there is an inter-loop independent top.  The top bodies can be executed 

in parallel and the bottoms can then be executed serially.  Additionally, the current state of 

JavaAutoCuda does not support detecting inter-loop dependencies while dealing with 

arrays.  It simply can detect that a loop does not have inter-loop 

dependencies when only the indexes exactly equal to the control index of the loop is used.  

It is part of the future work to use Region Array SSA form [15] to solve this problem and 

support more numerical computing applications. 

 

 

Divergent execution amount is represented as a score in the translator named 

DivergentScore.  There is code in place that will filter out loops whose score is greater than 

a policy number named MaxDivergentScore.  In future work, the MaxDivergentScore value 
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will be determined empirically by running many numerical computing loops both on the 

CPU and GPU with a known DivergentScore and measuring the time for completion of both.  

The DivergentScore is calculated by counting the number of units that are in the body of an 

If Statement whose condition is dependent on the loop control.  Since divergent execution 

only serializes threads within a warp (a group of 32 threads) future work will calculate a 

DivergentScore that incorporates thread clustering. 

 

Determining the loop control(s) has not yet been discussed and is required to calculate the 

DivergentScore.  The loop control is determined by analyzing the variables in the condition 

of the If Statement of a loop.  If a variable in the condition of an If Statement has its value 

changed during the body of the loop, it is marked as a control of the loop. 

 

 

SECTION 4.2 A LOOP TRANSFORMATION THAT ENABLES DELEGATION OF WORK TO THE 
GPU 
 
The first type of loop transformation was described in Section 3.1.  This was the simplest 

case.  The second type of loop transformation breaks up loops that may or may not be in 

methods.  An original pseudo-code program is below and subsequent to that is the 

transformation of that program. 

 

Original Program: 
1 
2 
3 
4 
5 

public class example { 
  public int entryFunction(){ 
    int total = 0; 
    for(int i = 0; i < 4096; ++i){ 
      total += functionWithPartialLoopDependency(); 
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6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

    } 
    return total; 
  } 
 
  private int functionWithPartialLoopDependency(){ 
    //loop without dependency 
    int[] totals = new int[4096*4096]; 
    for(int j = 0; j < 4096; ++i){ 
      for(int k = 0; k < 4096; ++k){ 
        int curr_total = computation(); 
        totals[j*4096+k] = curr_total; 
      } 
    } 
    int ret = 0; 
    for(int i = 0; i < totals.length; ++i){ 
      ret += totals[i]; 
    }    
    return ret; 
  } 
} 

Figure 26 – Original Complex Loop to be Modified 

 

Transformed Program: 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
 
16 
17 
18 
19 
20 
21 
22 
23 
24 
 
25 
26 
27 

public class example { 
  public void entryFunction(){ 
    int total = 0; 
    QueueManager manager = QueueManager.v(); 
    for(int i = 0; i < 4096; ++i){ 
      ConcLoopBody block = new ConcLoopBody(i); 
      block.setIterationFlag(0, true); 
      functionWithPartialLoopDependencyTop(manager, block); 
    } 
    manager.run(); 
    PeekIterator<RuntimeBasicBloc> iter = manager.iterator(); 
    while(iter.hasNext()){ 
       ConcLoopBody block = (ConcLoopBody) iter.next(); 
       if(iter.hasNextNext()){ 
          ConcLoopBody next_next_block = (ConcLoopBody) 
iter.nextNext(); 
          if(next_next_block.getIterationFlag(1)){ 
            total += functionWithPartialLoopDependencyBottom(block); 
          } 
       } 
    } 
    return total; 
  } 
 
  private void functionWithPartialLoopDependencyTop(QueueManager 
manager, ConcLoopBody block){ 
    int i = block.i; 
    //loop without dependency 
    int[] totals = new int[4096*4096]; 
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29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
 
41 
42 
43 
44 
45 
46 
47 
48 

    for(int j = 0; j < 4096; ++i){ 
      block.setIterationFlag(1, true); 
      for(int k = 0; k < 4096; ++k){ 
        block.addj(j); 
        block.addk(k); 
        manager.enqueue(block); 
        block.setIterationFlag(1, false); 
      } 
      block.setItertionFlag(0, false); 
    } 
  } 
 
  private int functionWithPartialLoopDependencyBottom(ConcLoopBody 
block){ 
    int[] totals = block.totals; 
    int ret = 0; 
    for(int i = 0; i < totals.length; ++i){ 
      ret += totals[i]; 
    }    
    return ret; 
  } 
} 

Figure 27 – Modified Complex Loop 

 

With this transformation small sections of loop independent code are found and put in 

parallel and the dependent code is properly executed after the parallel execution.  The 

author has not implemented this yet but he believes this method of loop finding is sufficient 

to accelerate real-world examples such as medical imaging. 

 

 

SECTION 4.5 CHOOSING, AT RUNTIME, WHETHER TO USE THE CPU OR THE GPU FOR A 
LOOP EXECUTION 
 

At runtime, during the iteration of a loop, the body of that loop is not executed directly.  

Instead, a Concrete LoopBody that represents the body and contains all the data needed to 

sustain the computation of that body is placed in a queue.  Then, when the loop has 
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finished, all of the LoopBody objects are available in the queue.  The QueueManager's run 

function is then called.  If the QueueManager finds that there are a sufficient number of 

LoopBody objects to obtain a speedup, they are run all at the same time on the GPU.  

Otherwise, they are run on the CPU.  

 

 

SECTION 4.6 TRANSLATING JAVA BYTECODE TO THE EQUIVALENT CUDA CODE 
 

Translating Java Bytecode to the equivalent CUDA code requires determining each Java 

Class that can possibly be executed from the current loop.  For each Java Class, each 

possibly executed method is found and from each method, each possibly accessed Java Field 

is found.  Once all of this information is aggregated translation begins. 

 

To support polymorphism, each reference type (including array types) that can exist on the 

GPU is assigned a unique number named the Type Identifier.  The Type Identifier is stored 

in the object's memory (in GPU global memory).  Now, for each virtual method that needs to 

be executed polymorphicly, a wrapper function is generated that accepts an instance of the 

object and the arguments to the method.  Inside the wrapper function a switch statement is 

used to select the correct concrete function based on the stored Type Identifier.  Note that 

using a Type Identifier was required because the CUDA specification disallows function 

pointers that could have been used to form a virtual function pointer table. 
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To support accessing fields, for each field that is found, accessor and mutator functions are 

generated.  The functions accept a handle to the object.  When JavaAutoCuda has 

determined that the current loop being processed requires a garbage collector, the handle 

is dereferenced using the handle map.  Otherwise the handle corresponds directly to a 

location in global memory.  Once the location of the object in global memory is determined 

a precomputed offset is applied to the location and proper casting is applied to return or 

mutate values of the proper type.  Note that the computed offsets serve the same purpose 

as C structures, but computing offsets is more portable when using both Nvidia and AMD 

GPUs.  Supporting AMD GPUs is a task of future work that needs to wait until all of the 

OpenCL compilers are production quality. 

 

The body of each function is then generated by implementing Concrete StmtSwitch and 

JimpleValueSwitch classes.  The StmtSwitch and JimpleValueSwitch are Soot interfaces that 

are the Visitors of the Visitor Design Pattern.  A StmtSwitch visits Units in a JimpleBody and 

a JimpleValueSwitch visits Values in a JimpleBody.  For each Element the Visitors cover, 

code is generated that has the same semantics in CUDA C.  A special StmtSwitch is 

implemented to cover constructors because the JavaAutoCuda GPU Garbage Collected 

Object Header (discussed in Section 4.7) needs to be written to the object's memory. 

 

Care is taken during the entire code generation to first output all the declarations of 

functions and next output all of the implementations.  Additionally, existing CUDA C 

support code and a kernel entry point is combined with the generated code during code 

assembly. 
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SECTION 4.7 HIGH PERFORMANCE JAVA OBJECT (DE)SERIALIZATION TO AND FROM GPU 
MEMORY 
 

To accomplish high performance Java object serialization and deserialization, first every 

Java Class that will be used from a loop is detected at static analysis time.  Then it is 

determined what fields in each class are read from and what fields are written to.  A 

concrete doWriteToHeap method is then generated that writes the garbage collected object 

header first and also writes each GPU read field.  This is done for each type of object using 

the Visitor Design Pattern.  Care is taken so that the memory locations of GPU write only 

fields are skipped during writing.  Next a doReadFromHeap method is generated that reads 

only the fields that were modified on the GPU.  If an object was created on the GPU (as 

determined by the CreatedOnGpu Garbaged Collected Object header Field) a constructor is 

called that accepts a sentinel value.  Sentinel accepting constructors were generated at 

static code generation time for every class hierarchy that was found to be used on the GPU.  

The remainder of this section discusses Garbage Collected Object Header and the mechanics 

of writing objects to the GPU garbage collected heap. 

 

The Garbage Collected Object Header is 8 bytes long and shown in table 7 below.  All of 

these values are used by the garbage collector and discussed in Section 4.9. 

 

 

Field Size 
GC_COUNT 1 byte 
GC_COLOR 1 byte 
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GC_TYPE 1 byte 
GC_CTOR_USED 1 byte 
GC_SIZE 4 bytes 

Table 7 – Garbage Collected Object Header Layout 

 

To help write to the Garbage Collected Heap a Memory interface has been created that has a  

memory address stack.  This is useful when writing reference types.  Example code to write 

is shown below.  Note that the garbage collector expects garbage collected reference fields 

to be at the beginning of the memory after the header and the non reference fields at the 

end. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

int doWriteToHeap(Object o){ 
  if(o instanceof LoopBody){ 
    LoopBody b = (LoopBody) o; 
    int ret = heap.getHeapEndPtr(); 
    mem.writeByte(gc_count); 
    mem.writeByte(0); 
    mem.writeByte(class_id); 
    mem.writeByte(0); 
    mem.writeInt(size);     
 
    heap.incrementHeapEndPtr(size); 
    mem.pushAddress(); 
    mem.incrementAddress(size_minus_gc_info_size); 
    int field1_address = writeRefField(b.field1); 
    int top_address = mem.topAddress(); 
    mem.popAddress(); 
    mem.writeInt(field1_address); 
    //write non ref fields 
    mem.setAddress(top_address); 
  } 
} 

Figure 28 – Java Code that will be Generated to Write a LoopBody 

 

Originally the swapped and unswapped Memory implementations allocated a very large 

byte array that was written to and then copied to the GPU in one transfer.  This was not 

optimal because the GPU often has more available memory that can be allocated than the 
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CPUs and in the CPU memory this method effectively creates two copies of the objects 

involved.  The problem was that even though the GPU had free memory, the CPU would run 

out of memory.  The solution is to only allocate a small buffer and when that buffer gets full, 

copy the memory to the correct base address on the GPU.  Implementing this without 

changing the doWriteToHeap code generation requires that a copy does not occur while 

there are addresses pushed on the address stack, because in this case the address will be 

reverted to a smaller value and the buffer should not be copied yet. 

SECTION 4.8 DISCUSSION OF FAILURES 
 

Several aspects of JavaAutoCuda failed on the first attempt or never successfully obtained a 

speedup.  This section is devoted to explaining the problems that were encountered.  The 

optimizations that never obtained a speedup are: 1) using shared memory to create a 

general purpose cache and 2) creating a GPU garbage collector.  The following methods 

failed on the first attempt but were improved: 1) Java object (de)serialization and 2) Using 

OpenCL as the target GPU language.  The Java object (de)serialization originally obtained 

correct results, but the performance was very slow. 

 

 

SECTION 4.8.1 GENERAL PURPOSE GPU CACHE USING SHARED MEMORY 
 

The first aspect that failed was a software defined cache using shared memory.  The idea is 

to write software that uses the fast shared memory as a cache of the slow global memory.  

The first problem with this is that writable memory cannot be cached when there is no 
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global communication that allows updates to a dirty flag.  To solve this only read only 

memory was cached.  Note this is also the solution Nvidia came to with their cached read-

only texture memory.  The second problem with a software cache is that it doesn't combine 

with a moving garbage collector in a simple way.  If the value at an address is constant 

memory, but gets overridden by a move during a garbage collect, it no longer appears 

constant.  The solution to this is basing the cache address on references rather than 

absolute memory.  The last problem with the software defined cache was that there is very 

little shared memory relative to the amount of concurrency involved in large speedups. 

 

With all of the problems associated with the shared memory cache, there is a possibility 

that it can be used to obtain speedups on problems that don't exhibit massive parallelism.  

Because of this the performance results and algorithms of four types of caches are 

presented in the next sections. 

 

 

SECTION 4.8.1.1 CACHE WITH READER'S WRITER'S LOCK 
 

The cache with a reader's writer's lock allows multiple readers to read from the cache but 

only one writer to write to the cache at any instant.  Since this is a cache, if a writer cannot 

enter the write section, it simply does not write to the cache.  The cache requires five 

integers total for every two integers in the cache.  The code for this cache is longer than the 

other caches so it is listed in Appendix C.  The performance measurements for this cache 
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and the remaining caches in Section 4.8.1 can be found in table 8 and 9.  This cache 

performed the worst.  

 

 

SECTION 4.8.1.2 CACHE USING IDEAS FROM SOFTWARE TRANSACTIONAL MEMORY 
 

Software transactional memory is an alternative to lock-based synchronization for 

controlling access to a shared memory [20].  Instead of requiring the reader to lock during a 

read, a version is kept for each variable.  After the reader is done with all of the reads in a 

transaction, it checks to make sure all the versions are the same.  If they are the same then 

the data is consistent.  Otherwise the data needs to be re-read.  In a cache design, rather 

than trying to re-read a variable in the event of an inconsistency, global memory is queried.  

The best STM-like cache algorithm created uses 4 integers of storage for every 4 or 8 bytes 

of data.  There is a lock memory location for the writers, an address memory location that 

also acts as the version and two data locations.  The algorithm written in CUDA C is below. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

int cache_get_int_stm(int address){ 
  int ptr = address % (CACHE_SIZE_INTS / (CACHE_ENTRY_SIZE)); 
  ptr *= CACHE_ENTRY_SIZE; 
 
  int value; 
  int cache_addr = cache[ptr+ADDR_LOC]; 
  if(cache_addr == address){ 
    value = cache[ptr+DATA_LOC]; 
    cache_addr = cache[ptr+ADDR_LOC]; 
    if(cache_addr != address){ 
      value = *((int *) &global_memory[address]); 
    } 
  } else { 
    value = *((int *) &global_memory[address]); 
 
    if(cache[ptr+LOCK_LOC] == 0){ 
      int prev_value = atomicExch(&cache[ptr+LOCK_LOC], 1); 
      if(prev_value == 0){ 
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19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

        cache[ptr+ADDR_LOC] = -1; 
        __threadfence_block(); 
        cache[ptr+DATA_LOC] = value; 
        __threadfence_block(); 
        cache[ptr+ADDR_LOC] = address; 
        cache[ptr+LOCK_LOC] = 0; 
      } 
    } 
  } 
  return value; 
} 

Figure 29 – STM-like cache CUDA C code 

 

The performance of this cache was the best out of all the caches and the measurements can 

be found in tables 8 and 9. 

 

 

SECTION 4.8.1.3 SEGMENTED MEMORY CACHE 
 

The segmented memory cache organizes the shared memory so that each thread has its 

own small cache that is not shared with any other threads.  This removes all locking 

requirements but also does not allow threads to share data.  Two integers are required to 

store one integer in the cache with this method.  The algorithm written in CUDA C is below.  

1 
2 
3 
 
4 
5 
6 
7 
8 
9 
10 
11 
12 

int cache_get_int_seg(int address){ 
  int ptr = address % CONSTANT_KEEPING_THREADS_DISTINCT; 
  ptr += (threadIdx.x * (SIZE_OF_CACHE_ENTRY * 
              CONSTANT_KEEPING_THREADS_DISTINCT)); 
  if(cache[ptr+ADDR_LOC] == address){ 
    return cache[ptr+DATA_LOC]; 
  } else { 
    int value = *((int *) &global_memory[address]); 
    cache[ptr+ADDR_LOC] = address; 
    cache[ptr+DATA_LOC] = value; 
    return value; 
  } 
} 

Figure 30 – Segmented Memory Cache CUDA code 
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The performance measurements of the Segmented Memory Cache can be found in tables 8 

and 9. 

 

 

SECTION 4.8.1.4 CACHE WITH SIMPLE MUTEX 
 

The cache with a simple mutex uses classical locks to ensure that only one thread is reading 

or writing at a single instant of time.  This cache requires four integers for every two 

integers stored. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

int cache_get_int_simple(int address){ 
  int ptr = address % (CACHE_SIZE_INTS / (CACHE_ENTRY_SIZE)); 
  ptr *= CACHE_ENTRY_SIZE; 
       
  int prev_lock = atomicExch(cache[ptr+LOCK_LOC], 1); 
  if(prev_lock == 1){ 
    return *((int *) &global_memory[address]); 
  }  
   
  int value; 
  if(cache[ptr+ADDR_LOC] == address){ 
    value = cache[ptr+DATA_LOC]; 
  } else { 
    value = *((int *) &global_memory[address]); 
    cache[ptr+ADDR_LOC] = address; 
    cache[ptr+DATA_LOC] = value; 
  } 
   
  cache[ptr+0] = 0; 
  return value; 
} 

Figure 31 – Cache with Simple Mutex 

 

See tables 8 and 9 for the performance results of the Cache with a Simple Mutex. 
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SECTION 4.8.1.5 CACHE PERFORMANCE RESULTS 
 

The execution time of a 1024x1024 matrix multiplication has been measured for each cache 

and the results are in tables 8 and 9 below.  Table 8 uses a 15360 byte cache while table 9 

uses a 512 byte cache. 

Cache Type Execution Time 
No cache 2.6 seconds 
STM 7.2 seconds 
Segmented Memory 14.3 seconds 
Simple Mutex 54 seconds 
Reader's Writer's Lock 146 seconds 

Table 8 – Performance Results of Various Cache Algorithms with 15360 byte cache 

 

Cache Type Execution Time 
No cache 2.6 seconds 
STM 3.8 seconds 
Segmented Memory 11 seconds 
Simple Mutex 42.1 seconds 
Reader's Writer's Lock 125 seconds 

Table 9 – Performance Results of Various Cache Algorithms with 512 byte cache 

 

Overall, it can be seen from tables 8 and 9 that using less shared memory for the cache 

improved performance.  This is most likely due to the fact that when each thread requests 

more cache memory the GPU thread scheduler cannot schedule as many threads at once.  

The cache replacement algorithm is dependent on the ordering of thread execution, so it is 

also possible that the speedup is due to Belady's anomaly [3]. 
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The STM cache has more possible locking that the Segmented Memory cache yet it achieves 

better performance.  This is probably because the Segmented Memory has a smaller cache 

per thread and items in the cache cannot be shared between threads.   

 

The Simple Mutex Cache requires a lock to read and write the data so it's performance is 

worse than the STM and the Reader's Writer's Lock Cache requires complex locking that 

has too much overhead. 

 

While none of the caches obtained a speedup over not caching for the matrix multiplication 

program, it is useful to know that the STM cache was the fastest.  In future work the 

performance of programs that have less parallelism than matrix multiplication will be 

studied while using an STM cache to see if using a large cache size can hide latency to global 

memory rather using than a large number of threads. 

 

 

SECTION 4.8.2 GPU GARBAGE COLLECTOR 
 

 
The second aspect that has currently failed is the GPU garbage collector.  It has been 

started, but not yet completed due to the difficulty associated with debugging CUDA C code.  

The CUDA C code and the memory layout used on the GPU can readily be incorporated with 

a GPU garbage collector.  The CUDA C code ensures that every reference assignment goes 

through a gc_assign function so the garbage collector can track it.  Once the parallel garbage 

collector is finished, more possible code can be scheduled on the GPU.  
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SECTION 4.8.3 JAVA OBJECT SERIALIZATION USING REFLECTION 
 

The third aspect that failed was Java object to GPU memory conversion using reflection.  

This failed because reflection was heavily used in tight loops in a performance critical 

section of processing and Java reflection is slow compared to generated Java Bytecode.  The 

solution was to generate custom Java Bytecode that could replace the reflection operations 

in the specific case of object serialization to GPU memory. 

 

 

SECTION 4.8.4 USING OPENCL C AS THE TARGET GPU LANGUAGE 
 

The fourth aspect that failed was the generation of OpenCL C rather than CUDA C.  OpenCL 

is a new open standard for GPU programming supported by several vendors.  Usage of 

OpenCL C failed because the current OpenCL compilers are too buggy to implement a large 

computer generated GPU program.  While trying to use the OpenCL compiler from Nvidia 

internal errors would occur often.  At other times incorrect GPU machine code would be 

generated by the OpenCL C compiler.  An attempt was made to automatically fix the 

machine code but it was soon deemed that such errors were out of the scope of this 

research. 
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CHAPTER 5. PERFORMANCE RESULTS 
 

 

 

A matrix multiplication application was developed in Java, CUDA C and C.  The Java version 

was translated with JavaAutoCuda into the Java + CUDA C version.  The time to execute each 

version on two 4096x4096 matrices is shown in the Time to Execute column in table 10 

below.  Notice that the development time for the Java + CUDA C version is three times faster 

than the CUDA C version.  The Java + CUDA C version is 2.5X slower than the CUDA C 

version but it is still 29X faster than the Java only version.  With advanced optimizations 

that will be applied in the future work it is possible that the Java + CUDA C version will have 

performance closer to that of the CUDA C version. 

 
Version Development Time Time to Execute Speedup over C 
Java Only 10 minutes 2893 seconds 1.25 X 
Java + CUDA C 10 minutes 124 seconds 29.06 X 
CUDA C 29 minutes 49 seconds 73.53 X 
C 10 minutes 3603 seconds 1 X 

Table 10 – Matrix Multiplication Development Time and Time to Execute 

 

All performance measurements were run using a computer with an Intel Dual Core 2.40Ghz 

GPU and 2GB memory and a Tesla C1060 GPU.  Debian GNU/Linux 5.0.4 was used as the 

operating system along with the OpenJDK Java Server Virtual Machine version 1.6.  All 

CUDA kernels used 64 blocks and 64 threads. 

 



54 

 

 

 

The CUDA C version was written by the author, a fairly experienced CUDA developer, using 

a working copy of the matrix multiplication code in both C and Java for reference.  19 

minutes of the total time was spent debugging the computation on the GPU to ensure the 

correct result.  The application chosen was an easy problem to convert to something that 

uses a GPU.  Real world problems take much longer to convert a serial version to a GPU 

parallel version. 

 

Additionally the author has measured the execution time of different iteration sizes and 

different loop transformations.  Detailed and summary tables of performance 

measurements versus iteration size for the loop transformation choosing the outer-most 

loop as the body are is in tables 11 and 12 below.  Tables 13 and 14 give the same type of 

information but instead the translator is choosing an inner loop as the body. 

Iterations Time to Serialize Execution Time Time to De-Serialize 
256x256 55 ms 133 ms 66 ms 
512x512 43 ms 547 ms 46 ms 
1024x1024 149 ms 2301 ms 141 ms 
2048x2048 416 ms 10814 ms 334 ms 
4096x4096 1523 ms 82781 ms 1443 ms 

Table 11 – GPU Detailed Performance results of choosing the outer-most loop as the body 

 
Iterations GPU Total Time CPU Total Time Speedup 
256x256 805 ms 138 ms -6.2X 
512x512 638 ms 1009 ms 1.6X 
1024x1024 2595 ms 8058 ms 3.1X 
2048x2048 11567 ms 183064 ms 15.8X 
4096x4096 85753 ms 1619322 ms 18.9X 

Table 12 – Summary GPU and CPU Performance results, outer-most loop 



55 

 

 

 

 

Note that the 4096x4096 iteration entry only has an 18X speedup while the same 

application with the same number of iterations had a 29X speedup in table 10 above.  This 

is because the Java Virtual Machine optimizes execution of the Java code as it runs. 

 

Iterations Time to Serialize Execution Time Time to De-Serialize 
256x256 179 ms 13 ms 125 ms 
512x512 275 ms 97 ms 155 ms 
1024x1024 1007 ms 785 ms 1192 ms 
2048x2048 7247 ms 6388 ms 53757 ms 
4096x4096 Out of Java Memory Out of Java Memory Out of Java Memory 

Table 13 – GPU Detailed Performance results of choosing the inner-most loop as the body 

 
Iterations GPU Total Time CPU Total Time Speedup 
256x256 762 ms 126 ms -6.1X 
512x512 570 ms 1014 ms 1.8X 
1024x1024 3401 ms 6865 ms 2.0X 
2048x2048 68755 ms 182200 ms 2.6X 
4096x4096 Out of Java Memory Out of Java Memory Out of Java Memory 

Table 14 – Summary GPU and CPU Performance results, inner loop 

 

The Java Program that was run is shown in figure 32 below.  Tables 11 and 12 refer to 

choosing the code between lines 3 and 9 to run on the GPU (named the outer loop).  Tables 

13 and 14 refer to choosing the code between lines 4 and 8 (named an inner loop).  The 

execution time of choosing the inner loop is actually better, but more objects need to be 

(de)serialized so the total time including the (de)serialization is greater. 

1 
2 

public void runOnGpu(){ 
  for(int i = 0; i < mSize; ++i){ 
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3 
4 
5 
6 
7 
8 
9 
10 
11 

    for(int j = 0; j < mSize; ++j){ 
      int total = 0; 
      for(int n = 0; n < mSize; ++n){ 
        total += x[n*mSize+j] * y[i*mSize+n]; 
      } 
      z1[i*mSize+j] = total; 
    } 
  }   
} 

Figure 32 – Java Matrix Multiplication Program 
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CHAPTER 6.  FUTURE WORK 
 

 

 
While continuing work on a doctoral degree, this thesis work will be extended.  First, the 

automatic usage of GPUs from the Java Programming Language will be extended.  After that, 

a translator will be created that automatically distributes computations in Java Bytecode 

across multiple computers in a network.  Each peer will automatically utilize any GPUs that 

are present.  Additionally, each computer will automatically use threading to distribute 

work among local CPU cores.  It will be a goal in the work to make setting up the network to 

have a low learning curve while at the same time maintaining security.  This is essential to 

achieve wide adaptation by non-computer scientists.  To ensure correctness, it will be 

formally verified that the transformations applied to the Java Bytecode maintain the 

original behavior.  This verification will have to incorporate the different semantics of Java 

Bytecode for CPUs and CUDA for GPUs.  In the next paragraph the optimizations that will be 

applied to the current work are described. 

 

The first optimization that will be applied to the current work will be to detect more 

computation that can be automatically parallelized by doing more array access analysis.  

Currently only very simple and restrictive array access analysis is done.  The algorithms 

from the paper “Region Array SSA” [15] will most likely be used. 
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The second optimization that will be applied is to take advantage of the fact that the Nvidia 

GPU architecture allows different groups of 32 threads (called warps) to do different things.  

Currently it is assumed that all threads in the kernel launch are doing the same thing.   

 

The third optimization that will be applied is array region analysis to reduce the amount of 

data copied from large arrays.  Currently if an array is used on the GPU, the entire array is 

copied.  With array region analysis, only the portions of the array that are needed will be 

copied. 

 

The fourth optimization that will be applied is optimization of the CUDA GPU code.  

Currently accesses to read only fields, such as the size of an array, are read every time from 

global GPU memory.     

 

A fifth research activity will be to apply loop unrolling to loops that have inter-loop 

dependencies to see if the dependencies can be eliminated.  This would allow more possible 

code to be executed on the GPU. 

 

A sixth research activity will be to include all control constructs in the calculation of the 

DivergentScore.  This will make the DivergentScore more accurate.  JavaAutoCuda may be 

offered for use by the public through a website that users submit compiled Java Bytecode 

and the result of running JavaAutoCuda is returned.  If this is done we will be able to easily 

run every detected loop and determine empirically a good MaxDivergentScore. 

 



59 

 

 

 

Finally, JavaAutoCuda will be improved to support more Java Programming Language 

features on the GPU such as: exceptions, static data and methods, anonymous methods and 

classes, multi-dimensional arrays, Java Collections and strings. 
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APPENDIX A: RELATED WORK 
 

 

SECTION A.1 JACKET 
 
Jacket is a patented commercial product from the company AccelerEyes [1].  With Jacket the 

programmer can develop in MATLAB and specifically tell Jacket which computations should 

be executed on the GPU.  This is done in Jacket by prepending MATLAB functions with a g.  

For instance, gdouble will cast a CPU matrix to a double GPU matrix.  Then once data 

structures are on the GPU any computation statements associated with those GPU data 

structures are executed on the GPU.  Jacket’s patent language specifically mentions working 

with matrices. 

 

An example of a matrix multiplication using Jacket is available in the Jacket Getting Started 

Guide [2] and is listed below. 

 
1 
2 
3 
4 
5 
6 
7 
8 

>>  X = gdouble( magic ( 3 ) ); 
>>  Y = gones( 3, ‘double’ ); 
>>  A = X * Y; 
 
A  = 
      15    15    15 
      15    15    15 
      15    15    15  

Figure 33 – Matrix Multiplication with Jacket and MATLAB 

 

The Jacket Getting Started Guide recommends to first profile your existing serial application 

that is written in MATLAB and the convert key CPU matrices to GPU matrices. 
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Jacket also provides a parallel-for that is begun and ended using gfor and gend, respectively.  

Executing 200 parallel FFTs on a GPU is demonstrated in Figure 34 below.  The Getting 

Started Guide mentions that the Jacket parallel-for is a preliminary feature that only 

supports a subset of the functionality that is provided with matrix operations in Jacket. 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

N = 128; % matrix size  
M = 200; % number of tiled matrices  
 
% Create Data  
[Ac Bc] = deal(complex( gones(N,N,M, 'single'),0));  
 
% Compute 200 (128x128) FFTs  
gfor ii = 1:M  
  Ac(:,:,ii) = fft2(Bc(:,:,ii));  
gend  
 
% Bring the results back to CPU  
Ac = single(Ac);  

Figure 34 – Parallel FFT on GPU with Jacket and MATLAB [2] 

 

The Jacket Getting Started Guide claims that the parallel FFT will achieve a 600% speedup 

over a serial CPU version.  It also discusses a problem that Jacket has with loops.  The 

simple loop listed below is compiled with Nvidia’s nvcc compiler every loop iteration.   This 

is because the n is a CPU variable and Jacket cannot effectively handle this case.  This case is 

handled with the methods and algorithms provided in this thesis.  The Getting Started 

Guide does offer a solution: make n a GPU variable. 

 
1 
2 
3 
4 

A = geye( 3, ‘double’ );  
for n = 1:10,  
  A * n 
end  

Figure 35 – MATLAB Loop that will be compiled every iteration with Jacket [2] 
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SECTION A.2 PGI ACCELERATOR COMPILER 
 

The PGI Accelerator Compiler is described in the paper “Implementing the PGI Accelerator 

Mode” by Michael Wolfe [9].  With the PGI Accelerator Compiler the end user must specify 

regions that will be computed on the GPU.  This is shown in the Fortran Programming 

Language below. 

 
1 
2 
3 
4 
5 
6 
7 
8 
 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

!$acc data region copy(a(1:n,1:m)) & 
!$acc& local(b(2:n-1,2:m-1)) copyin(w(2:n-1) 
  do while(resid.gt.tol) 
    resid = 0.0 
!$acc region 
    do i = 2, n-1 
      do j = 2, m-1 
        b(i,j) = 0.25*w(i)*(a(i-1,j)+a(i,j-1)+a(i+1,j)+a(i,j+1))+ 
                 (1.0-w(i))*a(i,j) 
      enddo 
    enddo 
    do i = 2, n-1 
      do j = 2, m-1 
        resid = resid + (b(i,j)-a(i,j))**2 
        a(i,j) = b(i,j) 
      enddo 
    enddo 
!$acc end region 
  enddo 
!$acc end data region 

Figure 36 – Fortran code with PGI compiler directives [9] 

 

At line 5 there is a region start directive and at line 17 there is the region end directive.  The 

paper says that the data region directives are optional (lines 1, 2 and 19).  These data 

region directives can be used in cases where two or more consecutive loops can share 

memory transfers (each consecutive loop commonly has a separate GPU launch and 

separate memory transfers).  Wolfe states that the data region directives are very 

important because memory transfer is relatively slow over the PCI-express data bus.  With 

garbage collected languages there is an added hurdle which is converting a graph of object 
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references along with object data into a serial memory suitable for use on the GPU.  We paid 

special attention to this issue while developing JavaAutoCuda.   

 

The PGI Accelerator Compiler supports C and Fortran as input languages and does some 

advanced optimizations on the input code.  To determine what data needs to be allocated 

on the GPU and copied from the CPU standard data-flow, alias and array region analysis is 

performed.  JavaAutoCuda does a variant of data-flow and alias analysis by simply doing a 

data-flow analysis on code that has been converted to Single Static Assignment.  No array 

region analysis is done in JavaAutoCuda but will be considered for future work. 

 

Wolfe writes that it is desirable to have many tasks running on the GPU simultaneously so 

there is adequate use of the processing elements that individually have a lower clock rate 

than a current CPU.  At the same time it is required that there is not a request to run a 

kernel with so many tasks that the GPU cannot schedule the job due to lack of resources.  

Nvidia GPU computational resources are grouped with the abstraction of blocks and 

threads.  A kernel launch can have a maximum of 65535 blocks and 512 threads per block.  

This would equal 33553920 tasks.  The PGI Accelerator Compiler tries to map loops directly 

to block and thread dimensions.  This is because global memory accesses are fastest when a 

large group of tasks request memory locations that are consecutive.  Wolfe also notes that 

loops can be reordered to reduce the number of global memory accesses. 

 

To make an automatic determination of the best loop transformation to use an objective 

function is used that is attentive to parallelism, memory strides, redundancy across threads, 
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data cache usage and hardware limits.  Their method is to generate many loop 

transformations and choose which one to run by using the following criteria: 

 
Choose the schedules with the least memory moves 

 
From the remaining schedules, choose the schedules with the least irregular memory 
moves 
 
From the remaining schedules, choose the schedules with the largest thread count 
 
From the remaining schedules, choose the schedules with the largest block count 
 
From the remaining schedules, choose the schedules with the least memory usage 
 
From the remaining schedules, choose which schedule will be easier for code generation 
 
To evaluate the automatic determination of schedule to run, the sample program in figure 

39 was run on 100x100, 1000x1000 and 1000x100 matrix sizes.  The results are in table 15 

below. 

 

Matrix Size Chosen Schedule Fastest Schedule 
100x100 25 usec 24 usec 
1000x1000 394 usec 350 usec 
1000x100 72 usec 54 usec 

Table 15 – Results of automatic schedule determination 

 

 

SECTION A.3 HICUDA 
 

hiCUDA[7] allows the user to write the CPU and GPU code all in one file.  hiCUDA is useful 

for someone who wants to still have control over the low level details of GPU programming 

but wants some assistance in writing the code that allocates global GPU memory and 
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transfers the host data to the global GPU memory.  An example from [7] is shown below 

that demonstrates the programming model.  In figure 37 the original matrix multiply 

program is shown and in figure 38 the hiCUDA matrix multiply program is shown. 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

float A[64][128]; 
float B[128][32]; 
float C[64][32]; 
 
//initialize A and B (not shown) 
 
for(i = 0; i < 64; ++i){ 
  for(j = 0; j < 32; ++j){ 
    float sum = 0; 
    for(k = 0; k < 128; ++k){ 
      sum += A[i][k] * B[k][j]; 
    } 
    C[i][j] = sum; 
  } 
} 

Figure 37 – Matrix Multiplication From [7] 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
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21 
22 
23 
24 
25 
26 

float A[64][128]; 
float B[128][32]; 
float C[64][32]; 
 
//initialize A and B (not shown) 
 
#pragma hicuda global alloc A[*][*] copyin 
#pragma hicuda global alloc B[*][*] copyin 
$pragma hicuda global alloc C[*][*]  
 
#pragma hicuda kernel matrixMul tblock(4,2) thread(16,16) 
#pragma hicuda loop_partition over_tblock over_thread 
for(i = 0; i < 64; ++i){ 
#pragma hicuda loop_partition over_tblock over_thread 
  for(j = 0; j < 32; ++j){ 
    float sum = 0; 
    for(kk = 0; kk < 128; kk += 32){ 
#pragma hicuda shared alloc A[i][kk:kk+31] copyin 
#pragma hicuda shared alloc B[kk:kk+31][j] copyin 
#pragma hicuda barrier 
      for(k = 0; k < 32; ++k){ 
        sum += A[i][kk+k] * B[kk+k][j]; 
      } 
#pragma hicuda barrier 
#pragma hicuda shared remove A B 
    } 
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28 
29 
30 
31 
32 

    C[i][j] = sum; 
  } 
} 
#pragma hicuda kernel_end 
#pragma hicuda global copyout C[*][*] 
#pragma hicuda global free A B C  

Figure 38 – hiCUDA Matrix Multiplication From [7] 

 

The resulting hiCUDA Matrix Multiplication program exposes fairly low level aspects of 

using a GPU.  The end user has to specify that memory needs to be allocated and copied to 

the device (lines 7 though 9), that a kernel has to be made of a certain size (line 11), that the 

kernel ends, memory is copied from the device and GPU memory is freed (lines 30 through 

32).  The writers of the paper also applied a strip-mining optimization to utilize the fast 

shared memory of the GPU manually (lines 18 though 20 and 24, 25). 

 

hiCUDA also has a compiler directive that can turn on serial executing while on the GPU.  

Also it is noteworthy that hiCUDA supports non-perfect distribution of iterations over 

threads.  This means that there may be gaps in iterations because the hiCUDA compiler 

directly maps loop indices to GPU tasks.  To protect against this the compiler will generate 

guard code.  JavaAutoCuda takes a different approach, if there is an loop index it is stored in 

global memory and fetched when needed.  This method supports cases where there is no 

loop index (such as with Java iterators). 
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SECTION A.4 HMPP 
 

HMPP [8] is a commercial software product that supports C code annotated with compiler 

directives that enables the use of accelerators, including GPUs.  The directive types are: 

codelet, execution and data transfer.  A codelet specifies that a function is “hardware 

assisted” (i.e. run on the GPU).  An example of using the codelet directive is in figure 39 

below.  At line one the “output=outv” statement directs the compiler to copy outv back to 

the CPU after execution.  Note that the end user has to supply and unsigned integer array 

specifying the dimensions of each pointer (for example N1 specifies the dimensions of inv 

and N3 specifies the dimensions of outv).  Codelet functions must be pure functions in 

HMPP meaning that they always evaluate the same result given the same arguments, have 

no side effects and have no I/O. 

 
1 
2 
 
4 
5 
6 
7 
8 

#pragma hmpp trivial codelet, output=outv 
void trivial(int n, float a, float *inv, unsigned int N1[1], float 
*outv, unsigned int N3[1]){ 
  int i, j; 
  for(i = 0; i < n; i++){ 
    outv[i] = a * inv[i]; 
  } 
} 

Figure 39 – Codelet example from [8] 

 

The next compiler directive is the remote code execution directive.  It enables a function to 

call a codelet.  An example is shown in figure 40 below.  If the accelerator is busy the CPU 

will be used. 

 
1 
2 

#pragma hmpp trivial callsite 
trivial(n, 2.f, inc, N1, outv, N3); 

Figure 40 – Remote code execution directive example from [8] 
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There are also data transfer directives that allow the end user to save copying the same 

data twice when it is shared amount codelets.  HMPP also supports asynchronous launching 

of codelets so a CPU job can execute at the same time as an accelerated job.  The paper [8] 

states that HMPP is compatible with OpenMP and MPI, two standards for parallel 

computations using shared memory and message passing.  If there are MPI directives in the 

end user code they will be combined with the HMPP processing to enable multiple 

computers to assist the computation utilizing any accelerators supported with HMPP.   

 

 

SECTION A.5 OPENMP TO GPGPU 
 

OpenMP to GPGPU [13] is an effort to convert OpenMP programs into Nvidia GPU 

programs.  The OpenMP to GPGPU reference makes the following high level observations 

regarding OpenMP and GPUs: 1) OpenMP is efficient at expressing loop-level parallelism 2) 

The OpenMP concept of a master thread and a pool of workers in the OpenMP fork-join 

model maps well to a master CPU and a pool of GPU threads and 3) The OpenMP feature of 

incremental parallelization of applications can be applied to GPU programming. 

 

The paper contributes the first compiler framework for automatic conversion of OpenMP 

programs to CUDA based programs.  It contributes to optimization of GPU computing by 

identifying and implementing compile-time transformation techniques that optimize GPU 
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global memory access.  The transformations are parallel loop-swap, loop collapsing,  

caching and memory transfer reduction. 

 

OpenMP to GPGPU translates OpenMP programs to GPU programs in two phases.  The first 

phase is an OpenMP Stream Optimizer and the second phase is O2G Baseline Translation 

and CUDA optimization.  The OpenMP Stream Optimizer is not described in detail other 

than that it performs parallel loop-swap and loop-collapsing optimizations.  The baseline 

translator is described as executing the following steps: 1) identifying kernel regions for the 

GPU, 2) extracting kernel regions into functions and transforming them into CUDA kernel 

functions, and 3) analyzing data that will be accessed by the GPU and inserting necessary 

memory transfer code.  To identify kernel regions for the GPU, the “parallel”, “for” and 

“section” regions are detected.  When global synchronization constructs are found (such as 

“barrier”) a kernel region is split into two and in the resulting code the synchronization is 

done on the CPU. 

 

The second phase is OpenMP to CUDA Baseline Translation.  Notably in this stage, 

optimization is done regarding the sections of serial code within a parallel portion in the 

OpenMP code.  The compiler includes the serial sections and redundantly executes them on 

all parallel threads to reduce costly memory transfers to and from the CPU. 

 

The major high level aspects of OpenMP to GPGPU have been discussed.  OpenMP to GPGPU 

also contains the following optimizations that are discussed below: parallel loop-swap, loop 

collapsing, caching global data, and memory transfer reduction. 
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Parallel loop-swap is an optimization that attempts to make accesses to global memory 

follow a pattern where each subsequent thread accesses a location one more than the 

previous thread.  The algorithm is as follows: From all the possible loops within a set of 

nested loops, identify candidate arrays that have continuous memory access.  Select a loop 

whose index variable will cause accesses to a candidate array to be monotonically 

incrementing.  If all the loops between the selected loop and another inner loop from the 

selected loop can be parallelized, interchange the said loops. 

 

Loop collapsing tries to collapse a nested loop into a single loop where accesses to an array 

are proved continuous.  In OpenMP to GPGPU runtime checks are added to prove that array 

accesses are continuous for cases that can only be determine at runtime.  It can be seen 

from figure 41 and 42 below that this optimization brings a multiplication that may 

possibly be shared among threads (figure 41, line 4) to a shared place (figure 42, line 2).  At 

the same time control divergence is decreased because some of the calculation in a possibly 

divergent portion of code is moved outside of a loop.  

1 
2 
3 
4 
5 

#pragma omp parallel for 
for (i = 0; i < NUM_ROWS; ++i) { 
  for (j = rowptr[i]; j < rowptr[i+1]; ++j) 
    w[i] += A[j]*p[col[j]]; 
} 

Figure 41 – Original OpenMP code before loop collapsing [13] 

 

1 
2 
3 
4 
5 
6 

if (tid1 < rowptr[NUM_ROWS]) { 
  l_w[tid1] = A[tid1]*p[col[tid1]]; 
} 
if (tid2 < NUM_ROWS) { 
  for (j = rowptr[tid2]; j < rowptr[tid2+1; ++j) 
    w[tid] += l_w[j]; 
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7 } 

Figure 42 – Loop collapsed CUDA code [13] 

 

The global memory caching optimization is accomplished in OpenMP to GPGPU by first 

running a static data flow analysis to identify temporal locality of global data.  The variables 

declared in a fast memory space are declared and used as a cache for the most used 

elements.  The paper states that there are limited hardware resources for the cache and 

there are performance issues that are difficult to control statically.  As a result the compiler 

framework includes language extensions for a programmer to guide these optimizations. 

 

The last optimization by the OpenMP to GPGPU compiler is memory transfer reduction.  In 

this optimization a data flow analysis is done on shared memory to determine what data 

that is required on the CPU is in shared memory.  The algorithms in this thesis include the 

same optimization, except operating on global memory.  

 

 

SECTION A.6 CUDA-LITE 
 

CUDA-lite [5] is not a whole compiler or translator as most of the other references are.  

CUDA-lite instead applies optimizations to programs already written in CUDA C by a 

programmer (or perhaps auto-generated by a compiler).  CUDA-lite transforms programs in 

CUDA C that only use slow global memory to CUDA C programs that use a combination of 

shared memory and global memory.  Shared memory can be thought of as useful to store 

data elements that will be used repeatedly.  Additionally shared memory is useful as a 



72 

 

 

 

temporary storage when doing coalesced reads.  CUDA-lite automatically transforms 

programs to do coalesced reads.  Below in figure 43 is the original kernel that uses global 

memory only and in figure 44 the modified kernel that coalesces reads and writer. 

1 
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4 
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6 
7 
8 
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10 
11 
12 
13 
14 
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#define ASIZE 3000 
#define TPB 256 
 
__global__ void kernel (float *a, float *b){ 
  int thi = threadIdx.x; 
  int bki = blockIdx.x; 
  float t = (float) thi + bki; 
  int i; 
 
  if(bki * TPB + thi >= ASIZE) 
    return; 
  for(i = 0; i < ASIZE; ++i){ 
    b[(bki*TPB+thi)*ASIZE+i] = a[(bki*TPB+thu)*ASIZE+i] * t; 
  } 
} 

Figure 43 – Original Kernel from [5] 
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#define ASIZE 3000 
#define TPB 256 
 
__global__ void kernel (float *a, float *b){ 
  int thi = threadIdx.x; 
  int bki = blockIdx.x; 
  float t = (float) thi + bki; 
  int i; 
 
  int j, End, k; 
  __shared__ float a_shared[TPB][TPB]; 
  __shared__ float b_shared[TPB][TPB]; 
  //loop tiling 
  End = ASIZE % TPB == 0 ? ASIZE / TPB : (ASIZE/TPB) + 1; 
  for(j = 0; j < End; j++){ 
    //coalesced loads 
    __syncthreads(); 
    for(k = 0; k < TPB; ++k){ 
      if((j*TPB + thi < ASIZE) &&  
         ((bki*TPB+k)*ASIZE + j*TPB + thi < ASIZE*ASIZE)){ 
           a_shared[k][thi] = a[(bki*TPB + k)*ASIZE + j*TPB + thi]; 
      }          
    } 
    __syncthreads(); 
 
    //conditions: TPB && obey original end && !(early exit condition) 
    for(i = 0; (i < TPB) && (j*TPB+i < ASIZE) && !(bki*TPB + thi >= 
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ASIZE); ++i){ 
      b_shared[thi][i] = a_shared(thi][i] * t; 
    } 
 
    //coalesced stores 
    __syncthreads(); 
    for(k = 0; k < TPB; ++k){ 
      if((j*TPB + thi < ASIZE) &&  
         ((bki*TPB+k)*ASIZE + j*TPB + thi < ASIZE*ASIZE)){ 
           b[(bki*TPB + k)*ASIZE + j*TPB + thi] = b_shared[k][thi]; 
      }          
    } 
    __syncthreads(); 
  } 
} 

Figure 44 – Modified Kernel from [5] that has coalesced reads and writes 

 

Currently to enable CUDA-lite to correctly generate the coalesced version annotations must 

be added to the original CUDA code.  It would be an interesting project to see if these 

annotations could be automatically generated from JavaAutoCuda (this work).  The results 

from CUDA-lite show that coalescing reads and writes can improve performance by 2 to 

17x. 

 

 

 

SECTION A.7 PYTHON PROJECT 
 

The unnamed Python project [4] converts the high level Python Programming Language to 

use GPUs.  They assume that the program has been annotated with what loops are parallel.  

In addition, since Python is dynamically typed, a piece of Python code that will be on the 

GPU needs to have its types annotated to help the translator.  A restriction is also made that 
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requires a variable to not change its type while on the GPU.  The author of this thesis thinks 

that this is a heavy restriction on an end user project with many existing lines of code. 

 

The Python project determines memory locations that need to be transferred rather than 

operating directly on objects.  In this way they may send more data than is needed.  The 

project uses a special iterator, prange to specify that a loop is parallel. A matrix 

multiplication program demonstrating this from the paper is listed below. 

 

1 
2 
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6 
7 
8 
9 
10 
11 
12 

@unpython.gpu 
@unpython.type (‘ndarray[double, 2]’, ‘ndarray[double, 2]’,  
                ‘ndarray[double, 2]’, None) 
def matrix mult (a, b, c): 
  m = shape(a)[0] 
  n = shape(b)[1] 
  p = shape(a)[1] 
  for i in prange(m): 
    for j in prange(n): 
      sum = 0.0 
      for k in xrange(p): 
        sum += a[i, k] * b[k, j] 
      c[i, j] = sum 

Figure 45 - Python GPU Matrix Multiplication 

 

The project includes the following optimizations: loop unrolling, limited loop fusion, partial 

load coalescing and partial redundant-load elimination. 
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APPENDIX B: MODIFICATIONS TO OPEN SOURCE SOFTWARE 
 

 

 
The author has modified the Soot Java Optimization Framework and JCuda.  The 

modifications to Soot are larger than those to JCuda.  Both are described in paragraphs 

below. 

  

Soot was designed to have two modes.  One mode is a local only mode that executes all user 

supplied transformations on classes one at a time.  The other mode is a global mode that 

constructs graphs such as a call graph.  The transformations I have designed require some 

global knowledge that is provided in the global mode, but the global mode is very slow for 

moderately sized input programs.  To get the global knowledge I needed without the 

expense of creating the graphs I added functionality to the local mode to execute 

transformations one at a time on all classes.  I also modified Soot to enable adding classes 

during a transformation phase.  The modified version of Soot is publicly available at: 

http://github.com/pcpratts/SootPhil 

 

For this project JCuda was modified in a very simple way.  The modification is to allow the 

client code to load dynamic native libraries rather than the library to support multiple 

operating systems in JavaAutoCuda.  The modified version of Jcuda is publicaly available at: 

http://github.com/pcpratts/JCudaJavaPhil 
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APPENDIX C. READER'S WRITER'S SHARED MEMORY CACHE 
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__device__ int 
cache_get_int(edu_pcpratts_gc_info gc_info, int address){ 
  int prev_lock; 
  int value; 
  int prev_num; 
 
  char * to_space = get_to_space_address(gc_info); 
  int ptr = address % (CACHE_SIZE_INTS / CACHE_ENTRY_SIZE); 
  ptr *= CACHE_ENTRY_SIZE; 
 
  atomicAdd(&mCache[ptr+0], 1); 
  prev_lock = atomicOr(&mCache[ptr+1], 2); 
  //reading or clear 
  if(prev_lock < 4){ 
    if(mCache[ptr+2] == address){ 
      value = mCache[ptr+3]; 
      prev_num = atomicSub(&mCache[ptr+0], 1); 
      if(prev_num == 1){ 
        atomicAnd(&mCache[ptr+1], ~2); 
      } 
      return value; 
    } else { 
      prev_num = atomicSub(&mCache[ptr+0], 1); 
      if(prev_num == 1){ 
        atomicAnd(&mCache[ptr+1], ~2); 
      } 
      value = *((int *) &to_space[address]); 
    } 
  } else { 
    value = *((int *) &to_space[address]); 
    prev_num = atomicSub(&mCache[ptr+0], 1); 
    if(prev_num == 1){ 
      atomicAnd(&mCache[ptr+1], ~2); 
    } 
  } 
  //replace entry in cache 
  prev_lock = atomicOr(&mCache[ptr+1], 4); 
  //if clear or empty 
  if(prev_lock == 0 || prev_lock == 1){ 
    mCache[ptr+2] = address; 
    mCache[ptr+3] = value; 
    __threadfence_block(); 
    mCache[ptr+1] = 0; 
  } else { 
    atomicAnd(&mCache[ptr+1], ~4); 
  } 
  return value; 
} 

Figure 46– Reader's Writer's Shared Memory Cache 
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APPENDIX D. COMPLETE JAVA+CUDA C VECTOR ADDITION CODE 
 

This appendix lists all the generated and transformed code for a vector addition example.  

The Shimple code is listed in Java for simplicity.  Figure 47 is the vector addition Java 

Source.  Figure 48 lists the transformed vector addition Java Source.  Figure 49 shows a 

Concrete LoopBody.  Figure 50 shows a Concrete GcObjectVisitor.  Finally, figure 51 

displays generated CUDA C code. 
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package edu.syr.pcpratts.javaautogpu.runtime.test; 
 
public class VectorAddExample { 
 
  int[] x; 
  int[] y; 
  int[] ret; 
 
  public void add(){ 
    for(int i = 0; i < x.length; ++i) { 
       ret[i] = x[i]+y[i]; 
    } 
  } 
} 

Figure 47 - Vector Addition Java Source 
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package edu.syr.pcpratts.javaautogpu.runtime.test; 
 
public class VectorAddExample { 
 
  int[] x; 
  int[] y; 
  int[] ret; 
 
  public void add(){ 
    QueueManager manager = QueueManager.v("0"); 
    for(int i = 0; i < x.length; ++i){ 
      LoopBody0 body = new LoopBody0(this, i); 
      manager.enqueue(body); 
    } 
    manager.run(); 
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    Iterator<LoopBody> iter = manager.iterator(); 
    while(iter.hasNext()){ 
      LoopBody0 curr_body = (LoopBody0) iter.next(); 
      //any inter-loop dependent code below the parallel portion 
      //of the loop would be executed here. in this example there  
      //is none. 
    } 
  } 
} 

Figure 48- Transformed Vector Addition Java Source 
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package edu.syr.pcpratts.javaautogpu.generated; 
 
import edu.syr.pcpratts.javaautogpu.runtime.LoopBody; 
import edu.syr.pcpratts.javaautogpu.runtime.test; 
import edu.syr.pcpratts.javaautpgpu.GcObjectVisitor; 
import edu.syr.pcpratts.javaautogpu.runtime.Memory; 
import edu.syr.pcpratts.javaautogpu.runtime.gpu.GcHeap; 
 
public class LoopBody0 extends LoopBody { 
 
  public VectorAddExample r0; 
  public int i0_1; 
 
  public LoopBody0(VectorAddExample r0, int i0_1){ 
    this.r0 = r0; 
    this.i0_1 = i0_1; 
  } 
 
  public void run(){ 
    r0.ret = r0.x[i0_1] + r0.y[i0_1]; 
  } 
 
  public String getCode(){ 
    StringBuilder ret = new StringBuilder(); 
    //note there is a maximum size of a String in a java class file 
    //so the string is split up  
    ret.append("<compiled CUDA C code part 1>\n"); 
    //... 
    ret.append("<compiled CUDA C code part N>\n"); 
    return ret.toString(); 
  } 
 
  public GcObjectVisitor getVisitor(Memory mem, GcHeap heap){ 
    return new LoopBody0GcObjectVisitor(mem, heap); 
  }   
} 

Figure 49- Generated LoopBody0 Java Source 
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package edu.syr.pcpratts.javaautogpu.generated; 
 
import edu.syr.pcpratts.javaautpgpu.GcObjectVisitor; 
import edu.syr.pcpratts.javaautogpu.runtime.Memory; 
import edu.syr.pcpratts.javaautogpu.runtime.gpu.GcHeap; 
 
public class LoopBody0GcObjectVisitor extends GcObjectVisitor { 
   
  public LoopBody0GcObjectVisitor(Memory mem, GcHeap heap){ 
    super(mem, heap); 
  } 
 
  public int doWriteToHeap(Object o, boolean write_data){ 
    if(o instanceof int[]){ 
      return GcArrayMover.write((int[]) o, write_data); 
    } 
    if(o instanceof VectorAddExample){ 
      VectorAddExample vec = (VectorAddExample) o; 
      int heap_end_ptr = mHeap.getHeapEndPtr(); 
      mMem.writeByte(3); 
      mMem.writeByte(0); 
      mMem.writeByte(11); 
      mMem.writeByte(0); 
      mMem.writeInt(20); 
      mHeap.incrementHeapEndPtr(20); 
      mMem.pushAddress(); 
      mMem.incrementAddress(12); 
      int ref_addr1 = writeToHeap(vec.ret, false); 
      int ref_addr2 = writeToHeap(vec.x, true); 
      int ref_addr3 = writeToHeap(vec.y, true); 
      int top_address = mMem.topAddress(); 
      mMem.popAddress(); 
      mMem.writeInt(ref_addr1); 
      mMem.writeInt(ref_addr2); 
      mMem.writeInt(ref_addr3); 
      mMem.setAddress(top_address); 
      return heap_end_ptr; 
    } 
    if(o instanceof LoopBody0){ 
      LoopBody0 body = (LoopBody0) o; 
      int heap_end_ptr = mHeap.getHeapEndPtr(); 
      mMem.writeByte(1); 
      mMem.writeByte(0); 
      mMem.writeByte(7); 
      mMem.writeByte(0); 
      mMem.writeInt(16); 
      mHeap.incrementHeapEndPtr(16); 
      mMem.pushAddress(); 
      mMem.incrementAddress(8); 
      int ref_addr1 = writeToHeap(body.r0, true); 
      int top_address = mMem.topAddress(); 
      mMem.popAddress(); 
      mMem.writeInt(ref_addr1); 
      mMem.writeInt(body.i0_1); 
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      mMem.setAddress(top_address); 
      return heap_end_ptr; 
    } 
    throw new RuntimeException("unknown type"); 
  } 
 
  public Object doReadFromHeap(Object o, boolean read_data){ 
    int type = readType(); 
    if(type == 3){ 
      return GcArrayMover.read((int[]) o); 
    }  
    if(type == 11){ //VectorAddExample 
      mMem.incrementAddress(3); 
      byte ctor_used_on_gpu = mMem.readByte(); 
      if(ctor_used_on_gpu == 1){ 
        o = new VectorAddExample(Sentinal.instance()); 
      } 
      VectorAddExample vec = (VectorAddExample) o; 
      mMem.incrementAddress(4); 
      int address_of_ret = mMem.readInt(); 
      mMem.pushAddress(); 
      mMem.setAddress(address_of_ret); 
      vec.ret = readFromHeap(vec.ret); 
      mMem.popAddress(); 
      mMem.incrementAddress(8); 
      return vec; 
    } 
    if(type == 7){ //LoopBody0 
      mMem.incrementAddress(3); 
      byte ctor_used_on_gpu = mMem.readByte(); 
      if(ctor_used_on_gpu == 1){ 
        o = new LoopBody0(Sentinal.instance()); 
      } 
      LoopBody0 body = (LoopBody0) o; 
      mMem.incrementAddress(4); 
      int address_of_vec = mMem.readInt(); 
      mMem.pushAddress(); 
      mMem.setAddress(address_of_vec); 
      body.r0 = readFromHeap(body.r0); 
      mMem.popAddress(); 
      mMem.incrementAddress(4); 
      return body; 
    } 
    throw new RuntimeException("unknown type"); 
  } 
} 

Figure 50 - Generated LoopBody0GcObjectVisitor Java Source 
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__device__ int 
edu_syr_pcpratts_gc_get_id(edu_pcpratts_gc_info gc_info){ 
  return blockIdx.x * blockDim.x + threadIdx.x; 
} 
 
__device__ edu_pcpratts_gc_info 
edu_syr_pcpratts_gc_init(char * gc_info_space, char * to_space,  
  char * from_space, char * to_handle_map, char * from_handle_map,  
  int to_space_free_ptr, int space_size, int cache_assoc){ 
   
  mCacheAssoc = cache_assoc; 
  *((int *) (&gc_info_space[0])) = (int) to_space; 
  *((int *) (&gc_info_space[4])) = (int) from_space; 
  *((int *) (&gc_info_space[8])) = (int) to_handle_map; 
  *((int *) (&gc_info_space[12])) = (int) from_handle_map; 
  *((int *) (&gc_info_space[16])) = to_space_free_ptr; 
  *((int *) (&gc_info_space[20])) = space_size; 
   
  __syncthreads(); 
 
  return gc_info_space; 
} 
 
__device__ char * 
edu_syr_pcpratts_gc_deref(edu_pcpratts_gc_info gc_info, int handle){ 
  char * to_space = edu_syr_pcpratts_gc_get_to_space_address(gc_info); 
  return &to_space[handle]; 
} 
 
__device__ void 
edu_syr_pcpratts_gc_assign(edu_pcpratts_gc_info gc_info,  
  int * lhs_ptr, int rhs){ 
  *lhs_ptr = rhs; 
} 
 
//no cache 
__device__ int 
edu_syr_pcpratts_cache_get_int(edu_pcpratts_gc_info gc_info,  
  int address){ 
  char * to_space = (char *) 
edu_syr_pcpratts_gc_get_to_space_address(gc_info); 
  return *((int *) &to_space[address]); 
} 
  
__device__ void edu_syr_pcpratts_javaautogpu_generated_LoopBody0_run( 
edu_pcpratts_gc_info gc_info, int thisref){ 
  int this0 = -1; 
  int r0 = -1; 
  int i0_1; 
  int $r2 = -1; 
  int $r3 = -1; 
  int $i2; 
  int $r4 = -1; 
  int $i3; 
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  int $i4; 
  edu_syr_pcpratts_gc_assign(gc_info, & this0 ,  thisref ); 
 
  r0  = instance_getter_edu_syr_pcpratts_javaautogpu_generated_  
        LoopBody0_r0( gc_info, this0); 
 
  i0_1  = instance_getter_edu_syr_pcpratts_javaautogpu_generated_ 
          LoopBody_i0_1(gc_info, this0); 
 
  $r2  = instance_getter_edu_syr_pcpratts_javaautogpu_runtime 
         _test_VectorAddExample_ret(gc_info, r0); 
 
  $r3  = instance_getter_edu_syr_pcpratts_javaautogpu_runtime_test 
         _VectorAddExample_x(gc_info, r0); 
  $i2  = int__array_get_cached(gc_info, $r3, i0_1);; 
 
  $r4  = instance_getter_edu_syr_pcpratts_javaautogpu_runtime_test 
         _VectorAddExample_y(gc_info, r0); 
 
  $i3  = int__array_get_cached(gc_info, $r4, i0_1);; 
 
  $i4  =  $i2   +   $i3  ; 
  int__array_set(gc_info, $r2, i0_1,  $i4 ); 
 
  return; 
} 
 
__device__ void 
edu_syr_pcpratts_javaautogpu_runtime_RuntimeBasicBlock_run( 
  edu_pcpratts_gc_info gc_info, int thisref){ 
 
} 
 
__device__ void 
invoke_edu_syr_pcpratts_javaautogpu_generated_LoopBody0_run( 
  edu_pcpratts_gc_info gc_info, int thisref){ 
  char * thisref_deref = edu_syr_pcpratts_gc_deref(gc_info, thisref); 
  GC_OBJ_TYPE_TYPE derived_type =  
    edu_syr_pcpratts_gc_get_type(thisref_deref); 
  if(0){} 
  else if(derived_type == 7){ 
    edu_syr_pcpratts_javaautogpu_generated_LoopBody0_run(gc_info,  
      thisref); 
  } 
  else if(derived_type == 8){ 
    edu_syr_pcpratts_javaautogpu_runtime_LoopBody0_run(gc_info,  
      thisref); 
  } 
} 
 
__device__ int 
instance_getter_edu_syr_pcpratts_javaautogpu_generated_LoopBody0_r0( 
  edu_pcpratts_gc_info gc_info, int thisref){ 
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  char * thisref_deref = edu_syr_pcpratts_gc_deref(gc_info, thisref); 
  return *((int *) &thisref_deref[8]); 
} 
 
__device__ int 
instance_getter_edu_syr_pcpratts_javaautogpu_generated_LoopBody0_i0_1( 
  edu_pcpratts_gc_info gc_info, int thisref){ 
 
  return edu_syr_pcpratts_cache_get_int(gc_info, thisref+12); 
} 
 
__device__ int 
instance_getter_edu_syr_pcpratts_javaautogpu_runtime_test_ 
  VectorAddExample_ret(edu_pcpratts_gc_info gc_info, int thisref){ 
 
  char * thisref_deref = edu_syr_pcpratts_gc_deref(gc_info, thisref); 
  return *((int *) &thisref_deref[8]); 
} 
 
__device__ int 
instance_getter_edu_syr_pcpratts_javaautogpu_runtime_test_ 
  VectorAddExample_x(edu_pcpratts_gc_info gc_info, int thisref){ 
 
  return edu_syr_pcpratts_cache_get_int(gc_info, thisref+12); 
} 
 
__device__ int 
instance_getter_edu_syr_pcpratts_javaautogpu_runtime_test_ 
  VectorAddExample_y(edu_pcpratts_gc_info gc_info, int thisref){ 
 
  return edu_syr_pcpratts_cache_get_int(gc_info, thisref+16); 
} 
__device__ void 
instance_setter_edu_syr_pcpratts_javaautogpu_runtime_test_ 
  VectorAddExample_y(edu_pcpratts_gc_info gc_info, int thisref,  
  int parameter0){ 
 
  char * thisref_deref = edu_syr_pcpratts_gc_deref(gc_info, thisref); 
  edu_syr_pcpratts_gc_assign(gc_info, (int *) &thisref_deref[16],  
    parameter0); 
} 
 
__device__ int int__array_get(edu_pcpratts_gc_info gc_info,  
  int thisref, int parameter0){ 
  char * thisref_deref = edu_syr_pcpratts_gc_deref(gc_info, thisref); 
  return *((int *) &thisref_deref[12+(parameter0*4)]); 
} 
 
__device__ int int__array_get_cached(edu_pcpratts_gc_info gc_info, 
  int thisref, int parameter0){ 
  return edu_syr_pcpratts_cache_get_int(gc_info,  
    thisref+12+(parameter0*4)); 
} 
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__device__ void int__array_set(edu_pcpratts_gc_info gc_info,  
  int thisref, int parameter0, int parameter1){ 
  char * thisref_deref = edu_syr_pcpratts_gc_deref(gc_info, thisref); 
  *((int *) &thisref_deref[12+(parameter0*4)]) = parameter1; 
} 
 
__global__ void entry(char * gc_info_space, char * to_space,  
  char * from_space, char * to_handle_map,  
  char * from_handle_map, int * handles, int * to_space_free_ptr,  
  int space_size, int cache_assoc, int iters){ 
   
  edu_pcpratts_gc_info gc_info =  
  edu_syr_pcpratts_gc_init(gc_info_space,  
    to_space, from_space, to_handle_map, from_handle_map,  
    *to_space_free_ptr, space_size, cache_assoc); 
  int loop_control = edu_syr_pcpratts_gc_get_id(gc_info); 
  if(loop_control < iters){ 
    int handle = handles[loop_control]; 
    edu_syr_pcpratts_javaautogpu_generated_LoopBody0_run(gc_info,  
      handle); 
  } 
  __syncthreads(); 
  *to_space_free_ptr =  
    edu_syr_pcpratts_gc_get_to_space_free_ptr(gc_info); 
  __syncthreads(); 
} 

Figure 51 - Generated CUDA C code (abbreviated) 



85 

 

 

 

BIBLIOGRAPHY 
 

 

 

[1] AccelerEyes Jacket: http://www.accelereyes.com/ 
 
 
[2] AccelerEyes Jacket, Getting Started Guide: 
http://www.accelereyes.com/content/doc/GettingStartedGuidev1.3.pdf 
 
 [3] An anomaly in space-time characteristics of certain programs running in a paging 
machine. L. A. Belady, R. A. Nelson, G. S. Shedler. Communications of the ACM. 1969. 
 
[4] Compiling Python to a Hybrid Execution Environment. Rahul Garg, Jose Nelson Amaral. 
Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing 
Units. 2010. 
 
[5] CUDA-Lite: Reducing GPU Programming Complexity.  Sain-Zee Ueng, Melvin Lathara, 
Sara S. Baghsorkhi, Wen-Mei W. Hwu.  Languages and Compilers for Parallel Computing: 
21th International Workshop, LCPC 2008. 
 
[6] Efficiently computing static single assignment form and the control dependence graph. 
Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, F. Kenneth Zadeck. ACM 
Transactions on Programming Languages and Systems (TOPLAS) 1991. 
 
[7] hiCUDA: a high-level directive-based language for GPU programming, T. D. Han and T. S. 
Abdelrahman, Proc. of 2nd Workshop on General Purpose Processing on Graphics 
Processing Units (GPGPU-2), 2009. 
 
[8] HMPP: A hybrid multicore parallel programming environment, Dolbeau, R., Bihan, S. and 
Bodin. 
 
[9] Implementing the PGI Accelerator model. Michael Wolfe, ACM International Conference 
Proceeding Series; Vol. 425 archive. Proceedings of the 3rd Workshop on General-Purpose 
Computation on Graphics. 2010   
 
[10] Infernal GPU Writeup: Adam Bazinet.  http://serine.umiacs.umd.edu/files/infernal-
gpu_writeup.pdf.  2008. 
 
[11] Mars, a MapReduce Framework: http://www.cse.ust.hk/gpuqp/Mars.html 
 



86 

 

 

 

[12] Nvidia: http://www.nvidia.com/object/product_tesla_c1060_us.html 
 
[13] OpenMP to GPGPU: a compiler framework for automatic translation and optimization. 
Seyong Lee, Seung-Jai Min, Rudolf Eigenmann. Proceedings of the 14th ACM SIGPLAN 
symposium on Principles and practice of parallel programming. 2009 
 
[14] Radar Signal Processing with Graphics Processors (GPUs): 
http://www.hpcsweden.se/files/RadarSignalProcessingwithGraphicsProcessors.pdf 
 
[15] Region array SSA. Silvius Rus, Guobin He, Christophe Alias, Lawrence Rauchwerger. 
Proceedings of the 15th international conference on Parallel architectures and compilation 
techniques. 2006 
 
[16] Sable Research Group at McGill University: http://www.sable.mcgill.ca/soot/ 
 
[17] Wikipdeia, FLOPS: http://en.wikipedia.org/wiki/FLOPS 
 
[18] Wikipedia, List of Java Virtual Machines: 
http://en.wikipedia.org/wiki/List_of_Java_virtual_machines 
 
 [19] Wikipedia, List of JVM Languages: 
http://en.wikipedia.org/wiki/List_of_JVM_languages 
 
[20] Wikipedia, Software Transactional Memory: 
http://en.wikipedia.org/wiki/Software_transactional_memory 
 
 
 
 
 
 
 



87 

 

 

 

VITA 
 

NAME OF AUTHOR: Philip Charles Pratt-Szeliga 

 

PLACE OF BIRTH: Utica, NY, USA 

 

DATE OF BIRTH: September 20, 1983 

 

UNDERGRADUATE SCHOOL ATTENDED: 

 Rensselaer Polytechnic Institute, Troy, New York, USA    

 

DEGREES AWARDED: 

 Bachelor of Science in Computer and Systems Engineering, 2005, Rensselaer 
Polytechnic Institute 

 

AWARDS AND HONORS: 

All University Masters of Science Prize, Syracuse University, 2010 

 

PROFESSIONAL EXPERIENCE: 

Teaching Assistant, Department of Electrical Engineering and Computer Science, Syracuse 
University, 2008-2010 

Instructor, Department of Electrical Engineering and Computer Science, Syracuse 
University, 2009





 

 

 

 

 


	List of Illustrative Materials
	Tables
	Figures

	Chapter 1. Introduction
	Section 1.1 Overview of this Research
	Section 1.2 Summary of Related Work

	Chapter 2. Background Information
	Section 2.1 Architecture of the GPU 
	Section 2.1.1 GPU Computational Capabilities
	Section 2.1.2 Divergent Execution
	Section 2.1.3 Memory Access Coalescing
	Section 2.1.4 Shared Memory Performance
	Section 2.1.5 Programming GPUs with CUDA
	Section 2.1.6 Other Existing ways to Program GPUs
	Section 2.2 Java Bytecode
	Section 2.3 Soot
	Section 2.3.1 Soot Transformations Outside of Methods
	Section 2.3.2 Soot Transformations Inside of Methods
	Section 2.4 JCuda

	Chapter 3.  Architecture of the Solution
	Section 3.1 Detailed Transformation Flow
	Section 3.1.1 Loop Detection
	Section 3.1.2 Loop Analysis
	Section 3.1.3 Concrete GcObjectVisitor Generation
	Section 3.1.4 CUDA C Code Generation
	Section 3.1.5 Concrete LoopBody Generation
	Section 3.1.6 Modification of Original Loop

	Chapter 4. Contributions
	Section 4.1 Loop Detection and Loop Categorization of Java Bytecode
	Section 4.2 A Loop transformation that enables delegation of work to the GPU
	Section 4.5 Choosing, at runtime, whether to use the CPU or the GPU for a loop execution
	Section 4.6 Translating Java Bytecode to the Equivalent CUDA code
	Section 4.7 High performance Java object (de)serialization to and from GPU memory
	Section 4.8 Discussion of Failures
	Section 4.8.1 General Purpose GPU Cache Using Shared Memory
	Section 4.8.1.1 Cache with Reader's Writer's Lock
	Section 4.8.1.2 Cache using ideas from Software Transactional Memory
	Section 4.8.1.3 Segmented Memory Cache
	Section 4.8.1.4 Cache with Simple Mutex
	Section 4.8.1.5 Cache Performance Results
	Section 4.8.2 GPU Garbage Collector
	Section 4.8.3 Java Object Serialization Using Reflection
	Section 4.8.4 Using OpenCL C as the Target GPU Language

	Chapter 5. Performance Results
	Chapter 6.  Future Work
	Appendix A: Related Work
	Section A.1 Jacket
	Section A.2 PGI Accelerator Compiler
	Section A.3 hiCUDA
	Section A.4 HMPP
	Section A.5 OpenMP to GPGPU
	Section A.6 CUDA-lite
	Section A.7 Python Project

	Appendix B: Modifications to Open Source Software
	Appendix C. Reader's Writer's Shared Memory Cache
	Appendix D. Complete Java+CUDA C Vector Addition Code
	Bibliography
	VITA

